Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1854776.1854815acmconferencesArticle/Chapter ViewAbstractPublication PagesbcbConference Proceedingsconference-collections
research-article

Differential biclustering for gene expression analysis

Published: 02 August 2010 Publication History

Abstract

Biclustering algorithms have been successfully used to find subsets of co-expressed genes under subsets of conditions. In some cases, microarray experiments are performed to compare the biological activities of the genes between two classes of cells, such as normal and cancer cells. In this paper, we propose DiBiCLUS, a novel Differential Biclustering algorithm, to identify differential biclusters from the gene expression data where the samples belong to one of the two classes. The genes in these differential biclusters can be positively or negatively co-expressed. We introduce two criteria for any pair of genes to be considered as a differential pair across the two classes. To illustrate the performance of the proposed algorithm, we present the experimental results of applying DiBiCLUS algorithm on synthetic and reallife datasets. These experiments show that the identified differential biclusters are both statistically and biologically significant.

References

[1]
W. Ayadi, M. Elloumi, and J.-K. Hao. A biclustering algorithm based on a bicluster enumeration tree: application to dna microarray data. BioData Mining, 2(1):9, 2009.
[2]
A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini. Discovering local structure in gene expression data: the order-preserving submatrix problem. Journal of computational biology, 10(3--4):373--384, 2003.
[3]
S. Busygin, O. Prokopyev, and P. M. Pardalos. Biclustering in data mining. Comput. Oper. Res., 35(9):2964--2987, 2008.
[4]
Y. Cheng and G. M. Church. Biclustering of expression data. In Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, pages 93--103. AAAI Press, 2000.
[5]
G. Fang, R. Kuang, G. Pandey, M. Steinbach, C. L. Myers, and V. Kumar. Subspace differential coexpression analysis: problem definition and a general approach. Pacific Symposium on Biocomputing, pages 145--156, 2010.
[6]
B. Ganter and C. Giroux. Emerging Applications of Network and Pathway Analysis in Drug Discovery and Development. Current Opinion in Drug Discovery and Development, 11:86--94, 2008.
[7]
G. Getz, E. Levine, and E. Domany. Coupled two-way clustering analysis of gene microarray data. Proc. Natl. Acad. Sci. USA, 97:12079--12084, 2000.
[8]
J. Ihmels, S. Bergmann, and N. Barkai. Defining transcription modules using large-scale gene expression data. Bioinformatics, 20(13):1993--2003, 2004.
[9]
J. Ihmels, S. Bergmann, J. Berman, and N. Barkai. Comparative gene expression analysis by a differential clustering approach: Application to the candida albicanstranscription program. PLoS Genet, 1(3):0380--0393, 2005.
[10]
J. Y. King, R. Ferrara, R. Tabibiazar, J. M. Spin, M. M. Chen, A. Kuchinsky, A. Vailaya, R. Kincaid, A. Tsalenko, D. X.-F. Deng, A. Connolly, P. Zhang, E. Yang, C. Watt, Z. Yakhini, A. Ben-Dor, A. Adler, L. Bruhn, P. Tsao, T. Quertermous, and E. A. Ashley. Pathway analysis of coronary atherosclerosis. Physiol. Genomics, 23(1):103--118, 2005.
[11]
G. Li, Q. Ma, H. Tang, A. H. Paterson, and Y. Xu. QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucl. Acids Res., 37(15):e101--, 2009.
[12]
J. Liu, Z. Li, X. Hu, and Y. Chen. Biclustering of microarray data with mospo based on crowding distance. BMC Bioinformatics, 10(Suppl 4):S9, 2009.
[13]
S. Madeira and A. Oliveira. A polynomial time biclustering algorithm for finding approximate expression patterns in gene expression time series. Algorithms for Molecular Biology, 4(1):8, 2009.
[14]
S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis: a survey. IEEE transactions on computational biology and bioinformatics, 1(1):24--45, 2004.
[15]
R. R Renee, A. Deepak, B. D. Melissa, Y. Sean, T. O. Folakemi, K. Nagi, M. H. Joseph, A. Titilola, S. Sandra, and F. S. Karam. Microarray comparison of prostate tumor gene expression in African-American and Caucasian American males: a pilot project study. Infect Agent Cancer, 4(1), 2009.
[16]
A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, A. Paulovich, S. L. Pomeroy, T. R. Golub, E. S. Lander, and J. P. Mesirov. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102(43):15545--15550, 2005.
[17]
A. Tanay, R. Sharan, and R. Shamir. Discovering statistically significant biclusters in gene expression data. Bioinformatics, 18(suppl-1):S136--144, 2002.
[18]
M. Zou and S. D. Conzen. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 21(1):71--79, 2005.

Cited By

View all
  • (2021)POPBic: Pathway-Based Order Preserving Biclustering Algorithm Towards the Analysis of Gene Expression DataIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2020.298081618:6(2659-2670)Online publication date: 1-Nov-2021
  • (2019)Potential Hazardous Elements Mining for Task Synthesis Safety Analysis in IMA System2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)10.1109/DASC43569.2019.9081736(1-5)Online publication date: Sep-2019
  • (2014)Efficient Mining Maximal Variant Usage and Low Usage Biclusters in Discrete Function-Resource MatrixJournal of Computers10.4304/jcp.9.5.1159-11679:5Online publication date: 1-May-2014
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
BCB '10: Proceedings of the First ACM International Conference on Bioinformatics and Computational Biology
August 2010
705 pages
ISBN:9781450304382
DOI:10.1145/1854776
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 August 2010

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Conference

BCB'10
Sponsor:

Acceptance Rates

Overall Acceptance Rate 254 of 885 submissions, 29%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)5
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)POPBic: Pathway-Based Order Preserving Biclustering Algorithm Towards the Analysis of Gene Expression DataIEEE/ACM Transactions on Computational Biology and Bioinformatics10.1109/TCBB.2020.298081618:6(2659-2670)Online publication date: 1-Nov-2021
  • (2019)Potential Hazardous Elements Mining for Task Synthesis Safety Analysis in IMA System2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC)10.1109/DASC43569.2019.9081736(1-5)Online publication date: Sep-2019
  • (2014)Efficient Mining Maximal Variant Usage and Low Usage Biclusters in Discrete Function-Resource MatrixJournal of Computers10.4304/jcp.9.5.1159-11679:5Online publication date: 1-May-2014
  • (2014)Efficient mining of discriminative co-clusters from gene expression dataKnowledge and Information Systems10.1007/s10115-013-0684-041:3(667-696)Online publication date: 1-Dec-2014
  • (2011)Constrained logistic regression for discriminative pattern miningProceedings of the 2011th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part I10.5555/3121838.3121857(92-107)Online publication date: 5-Sep-2011
  • (2011)Constrained logistic regression for discriminative pattern miningProceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part I10.5555/2034063.2034082(92-107)Online publication date: 5-Sep-2011
  • (2011)Ranking differential genes in co-expression networksProceedings of the 2nd ACM Conference on Bioinformatics, Computational Biology and Biomedicine10.1145/2147805.2147849(350-354)Online publication date: 1-Aug-2011
  • (2011)Constrained Logistic Regression for Discriminative Pattern MiningMachine Learning and Knowledge Discovery in Databases10.1007/978-3-642-23780-5_16(92-107)Online publication date: 2011

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media