Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1871871.1871881acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Combining syntactic information and domain-specific lexical patterns to extract drug-drug interactions from biomedical texts

Published: 26 October 2010 Publication History

Abstract

A drug-drug interaction (DDI) occurs when one drug influences the level or activity of another drug. The increasing volume of the scientific literature overwhelms health care professionals trying to be kept up-to-date with all published studies on DDI. Information Extraction (IE) techniques can provide an interesting way of reducing the time spent by health care professionals on reviewing the literature. Nevertheless, no approach has been carried out to extract DDI from texts. To the best of our knowledge, this work proposes the first integral solution for the automatic extraction of DDI from biomedical texts.

References

[1]
S. Ahmed, D. Chidambaram, H. Davulcu, and C. Baral. IntEx: A Syntactic Role Driven Protein-Protein Interaction Extractor for Bio-Medical Text. Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, pages 54--61, 2005.
[2]
A. Airola, S. Pyysalo, J. Bjorne, T. Pahikkala, F. Ginter, and T. Salakoski. A graph kernel for protein-protein interaction extraction. In Proceedings of BioNLP, pages 1--9, 2008.
[3]
A. Aronson. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In Proceedings of the AMIA Symposium, page 17, 2001.
[4]
R. Bunescu, R. Ge, R. J. Kate, E. M. Marcotte, R. J. Mooney, A. K. Ramani, and Y. W. Wong. Comparative experiments on learning information extractors for proteins and their interactions. Artificial Intelligence in Medicine, 33(2):139--155, 2005.
[5]
N. Burton-Roberts. Nominal apposition. Foundations of language, 13(3):391--419, 1975.
[6]
N. Calzolari, A. Lenci, and A. Zampolli. The EAGLES/ISLE computational lexicon working group for multilingual computational lexicons. In Proceedings of the First International Workshop on Multimedia Annotation. Tokyo (Japan), 2001.
[7]
Y. Chen, F. Liu, and B. Manderick. Normalizing Interactor Proteins and Extracting Interaction Protein Pairs using Support Vector Machines. In Proceedings of the BioCreative II. 5 Workshop 2009 on Digital Annotations, page 29, 2009.
[8]
G. Curme and G. Curme. A grammar of the English language: syntax. Verbatim Books, 1977.
[9]
C. de Pablo-Sánchez and P. Martínez. Building a Graph of Names and Contextual Patterns for Named Entity Classification. In 31st European Conference on Information Retrieval, 2009.
[10]
S. Duda, C. Aliferis, R. Miller, A. Statnikov, and K. Johnson. Extracting drug-drug interaction articles from MEDLINE to improve the content of drug databases. In AMIA Annual Symposium Proceedings, volume 2005, page 216, 2005.
[11]
W. Francis. The Structure of American English. New York, pages 409--17, 1958.
[12]
C. Fries. The structure of English: An introduction to the construction of English sentences. Harcourt, Brace, 1952.
[13]
P. Hansten. Drug interaction management. Pharmacy World & Science, 25(3):94--97, 2003.
[14]
M. Huang, X. Zhu, and M. Li. A hybrid method for relation extraction from biomedical literature. International Journal of Medical Informatics, 75(6):443--455, 2006.
[15]
O. Jespersen and J. McCawley. Analytic syntax. University of Chicago Press, 1984.
[16]
M. Krallinger, F. Leitner, C. Rodriguez-Penagos, and A. Valencia. Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biology, 9(Suppl 2):S4, 2008.
[17]
M. Krallinger, F. Leitner, and A. Valencia. The BioCreative II.5 challenge overview. In Proceedings of the BioCreative II. 5 Workshop 2009 on Digital Annotations, page 19, 2009.
[18]
S. Pyysalo, F. Ginter, J. Heimonen, J. Björne, J. Boberg, J. Järvinen, and T. Salakoski. BioInfer: a corpus for information extraction in the biomedical domain. BMC bioinformatics, 8(1):50, 2007.
[19]
A. Rodríguez-Terol, C. Camacho, et al. Calidad estructural de las bases de datos de interacciones. Farmacia Hospitalaria, 33(03):134, 2009.
[20]
R. Sætre, K. Sagae, and J. Tsujii. Syntactic features for protein-protein interaction extraction. In Proceedings of the International Symposium on Languages in Biology and Medicine (LBM short oral presentations), 2007.
[21]
I. Segura-Bedmar, M. Crespo, and C. de Pablo-Sánchez. Score-based approach for Anaphora Resolution in Drug-Drug Interactions Documents. In Natural Language Processing and Information Systems, volume 5040, 2009.
[22]
I. Segura-Bedmar, M. Crespo, C. de Pablo-Sánchez, and P. Martínez. Resolving anaphoras for the extraction of drug-drug interactions in pharmacological documents. BMC bioinformatics, 11(Suppl 2):S1, 2010.
[23]
I. Segura-Bedmar, P. Martínez, and M. Segura-Bedmar. Drug name recognition and classification in biomedical texts A case study outlining approaches underpinning automated systems. Drug Discovery Today, 13(17--18):816--823, 2008.
[24]
A. Siddharthan. Syntactic simplification and text cohesion. Research on Language & Computation, 4(1):77--109, 2006.
[25]
K. Verspoora, C. Roeder, H. Johnson, K. Cohen, W. Baumgartner, and L. Hunter. Information Extraction of Normalized Protein Interaction Pairs Utilizing Linguistic and Semantic Cues. In Proceedings of the BioCreative II. 5 Workshop 2009 on Digital Annotations, page 37, 2009.
[26]
E. Williams. Across-the-board rule application. Linguistic Inquiry, pages 31--43, 1978.
[27]
J. Wingersky, J. Boerner, and D. Holguin-Balogh. Writing paragraphs and essays: Integrating reading, writing, and grammar skills. Heinle, 2008.
[28]
D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic acids research, 36(Database issue):D901-6, Jan. 2008.
[29]
Z. Yang, H. Lin, and Y. Li. BioPPISVMExtractor: A protein-protein interaction extractor for biomedical literature using SVM and rich feature sets. Journal of Biomedical Informatics, 2009.
[30]
D. Zhou and Y. He. Extracting interactions between proteins from the literature. Journal of Biomedical Informatics, 2007.

Cited By

View all
  • (2018)Deep Convolution Neural Networks for Drug-Drug Interaction Extraction2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM.2018.8621405(1662-1668)Online publication date: Dec-2018
  • (2016)Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting dataJournal of Biomedical Informatics10.1016/j.jbi.2016.02.00960:C(294-308)Online publication date: 1-Apr-2016
  • (2014)Drug-Drug Interactions Detection from Online Heterogeneous Healthcare NetworksProceedings of the 2014 IEEE International Conference on Healthcare Informatics10.1109/ICHI.2014.9(7-16)Online publication date: 15-Sep-2014
  • Show More Cited By

Index Terms

  1. Combining syntactic information and domain-specific lexical patterns to extract drug-drug interactions from biomedical texts

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    DTMBIO '10: Proceedings of the ACM fourth international workshop on Data and text mining in biomedical informatics
    October 2010
    78 pages
    ISBN:9781450303828
    DOI:10.1145/1871871
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 26 October 2010

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. drug-drug interaction extraction
    2. information extraction

    Qualifiers

    • Research-article

    Conference

    CIKM '10

    Acceptance Rates

    Overall Acceptance Rate 41 of 247 submissions, 17%

    Upcoming Conference

    CIKM '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)Deep Convolution Neural Networks for Drug-Drug Interaction Extraction2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM.2018.8621405(1662-1668)Online publication date: Dec-2018
    • (2016)Mining association patterns of drug-interactions using post marketing FDA's spontaneous reporting dataJournal of Biomedical Informatics10.1016/j.jbi.2016.02.00960:C(294-308)Online publication date: 1-Apr-2016
    • (2014)Drug-Drug Interactions Detection from Online Heterogeneous Healthcare NetworksProceedings of the 2014 IEEE International Conference on Healthcare Informatics10.1109/ICHI.2014.9(7-16)Online publication date: 15-Sep-2014
    • (2013)Harnessing Social Media for Drug-Drug Interactions DetectionProceedings of the 2013 IEEE International Conference on Healthcare Informatics10.1109/ICHI.2013.10(22-29)Online publication date: 9-Sep-2013
    • (2011)Using a shallow linguistic kernel for drug-drug interaction extractionJournal of Biomedical Informatics10.1016/j.jbi.2011.04.00544:5(789-804)Online publication date: 1-Oct-2011

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media