Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1900179.1900187acmconferencesArticle/Chapter ViewAbstractPublication PagessiggraphConference Proceedingsconference-collections
research-article

A fully automated lumen contour detection of intravascular ultrasound images based on Gabor texture analysis

Published: 12 December 2010 Publication History

Abstract

The detection of the lumen contour in the Intravascular Ultrasound (IVUS) image plays a very important part in assessing atherosclerosis. However, for the images at a high sampling frequency, the blood signals make it difficult to detect the lumen contours. In this paper, a new segmentation method is proposed and implemented that detects the lumen contour in IVUS images automatically. The method is based on the difference of the texture features between the blood signals and the vessel wall. During preprocessing of the raw IVUS images, the method successfully removed the artificial noise, which was caused by the sampling catheter. After that, the lumen texture features and the vessel wall texture features were able to be distinguished through applying the Gabor wavelet transformation. Based on the distinguished texture features, the lumen contour was detected and refined smoothly. The experiment results indicate that the lumen contour in the raw IVUS image can be detected completely automatically and accurately.

References

[1]
Bovenkamp, E. G. P., Dijkstra, J., Bosch, J. G., and Reiber, J. H. C. 2004. Multi-agent segmentation of ivus images. Pattern Recognition 37, 4, 647--663.
[2]
Bovenkamp, E., Dijkstra, J., Bosch, J., and Reiber, J. 2009. User-agent cooperation in multiagent ivus image segmentation. IEEE Transactions on Medical Imaging 28, 1 (jan.), 94--105.
[3]
Bovik, A., Clark, M., and Geisler, W. 1990. Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 1 (jan.), 55--73.
[4]
Bovik, A. 1991. Analysis of multichannel narrow-band filters for image texture segmentation. IEEE Transactions on Signal Processing 39, 9 (sep.), 2025--2043.
[5]
Brusseau, E., de Korte, C., Mastik, F., Schaar, J., and van der Steen, A. 2004. Fully automatic luminal contour segmentation in intracoronary ultrasound imaging-a statistical approach. IEEE Transactions on Medical Imaging 23, 5 (may.), 554--566.
[6]
Cardinal, M.-H., Meunier, J., Soulez, G., Maurice, R., Therasse, E., and Cloutier, G. 2006. Intravascular ultrasound image segmentation: a three-dimensional fast-marching method based on gray level distributions. IEEE Transactions on Medical Imaging 25, 5 (may.), 590--601.
[7]
Clausi, D. A., and Jernigan, M. E. 2000. Designing gabor filters for optimal texture separability. Pattern Recognition 33, 11, 1835--1849.
[8]
Cleveland, W. S. 1979. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association 74, 368, 829--836.
[9]
Filho, E. d. S., Yoshizawa, M., Tanaka, A., Saijo, Y., and Iwamoto, T. 2005. Moment-based texture segmentation of luminal contour in intravascular ultrasound images. Journal of Medical Ultrasonics 32, 3, 91--99.
[10]
Giannoglou, G. D., Chatzizisis, Y. S., Sianos, G., Tsikaderis, D., Matakos, A., Koutkias, V., Diamantopoulos, P., Maglaveras, N., Parcharidis, G. E., and Louridas, G. E. 2006. Integration of multi-modality imaging for accurate 3d reconstruction of human coronary arteries in vivo. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 569, 2, 310--313. Proceedings of the 3rd International Conference on Imaging Technologies in Biomedical Sciences - Innovation in Nuclear and Radiological Imaging: from Basic Research to Clinical Application.
[11]
Giannoglou, G. D., Chatzizisis, Y. S., Sianos, G., Tsikaderis, D., Matakos, A., Koutkias, V., Diamantopoulos, P., Maglaveras, N., Parcharidis, G. E., and Louridas, G. E. 2006. In-vivo validation of spatially correct three-dimensional reconstruction of human coronary arteries by integrating intravascular ultrasound and biplane angiography. Coronary Artery Disease 17, 6, 533--543.
[12]
Gil, D., Radeva, P., Saludes, J., and Mauri, J. 2000. Automatic segmentation of artery wall in coronary ivus images: a probabilistic approach. In Computers in Cardiology 2000, 687--690.
[13]
Hammouda, K., and Jernigan, E. 2000. Texture segmentation using gabor filters. Tech. rep., University of Waterloo, Ontario.
[14]
Jain, A. K., and Farrokhnia, F. 1991. Unsupervised texture segmentation using gabor filters. Pattern Recognition 24, 12, 1167--1186.
[15]
Klingensmith, J. D., Vince, D. G., Shekhar, R., Kuban, B. D., Tuzcu, E. M., and Cornhill, J. F. 1999. Quantification of coronary arterial plaque volume using 3d reconstructions formed by fusing intravascular ultrasound and biplane angiography. Medical Imaging 1999: Physiology and Function from Multidimensional Images 3660, 1, 343--350.
[16]
Klingensmith, J., Shekhar, R., and Vince, D. 2000. Evaluation of three-dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. Medical Imaging, IEEE Transactions on 19, 10 (oct.), 996--1011.
[17]
Klingensmith, J. D., Vince, D. G., Kuban, B. D., Shekhar, R., Tuzcu, E. M., Nissen, S. E., and Cornhill, J. F. 2000. Assessment of coronary compensatory enlargement by three-dimensional intravascular ultrasound. The International Journal of Cardiac Imaging The International Journal of Cardiac Imaging 16, 2, 87--98.
[18]
Koning, G., Dijkstra, J., von Birgelen, C., Tuinenburg, J. C., Brunette, J., Tardif, J.-C., Oemrawsingh, P. W., Sieling, C., Melsa, S., and Reiber, J. H. 2002. Advanced contour detection for three-dimensional intracoronary ultrasound: a validation in vitro and in vivo. The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging) 18, 4, 235--248.
[19]
Kovalski, G., Beyar, R., Shofti, R., and Azhari, H. 2000. Three-dimensional automatic quantitative analysis of intravascular ultrasound images. Ultrasound in Medicine & Biology 26, 4, 527--537.
[20]
Mojsilovic, A., Popovic, M., Amodaj, N., Babic, R., and Ostojic, M. 1997. Automatic segmentation of intravascular ultrasound images: A texture-based. Annals of Biomedical Engineering 25, 6, 1059--1071.
[21]
Papadogiorgaki, M., Mezaris, V., Cliatzizisis, Y., Giannoglou, G., and Kompatsiaris, I. 2007. Automated ivus contour detection using intesity features and radial basis function approximation. Computer-Based Medical Systems, 2007. CBMS '07. Twentieth IEEE International Symposium on (jun.), 183--188.
[22]
Papadogiorgaki, M., Mezaris, V., Chatzizisis, Y. S., Giannoglou, G. D., and Kompatsiaris, I. 2008. Image analysis techniques for automated ivus contour detection. Ultrasound in Medicine & Biology 34, 9, 1482--1498.
[23]
Plissiti, M., Fotiadis, D., Michalis, L., and Bozios, G. 2004. An automated method for lumen and media-adventitia border detection in a sequence of ivus frames. IEEE Transactions on Information Technology in Biomedicine 8, 2 (jun.), 131--141.
[24]
Shekhar, R., Cothren, R. M., Vince, D. G., Chandra, S., Thomas, J. D., and Cornhill, J. F. 1999. Three-dimensional segmentation of luminal and adventitial borders in serial intravascular ultrasound images. Computerized Medical Imaging and Graphics 23, 6, 299--309.
[25]
Slager, C. J., Wentzel, J. J., Schuurbiers, J. C. H., Oomen, J. A. F., Kloet, J., Krams, R., von Birgelen, C., van der Giessen, W. J., Serruys, P. W., and de Feyter, P. J. 2000. True 3-dimensional reconstruction of coronary arteries in patients by fusion of angiography and ivus (angus) and its quantitative validation. Circulation 102, 5, 511--516.
[26]
Unser, M. 1995. Texture classification and segmentation using wavelet frames. IEEE Transactions on Image Processing 4, 11 (nov.), 1549--1560.
[27]
Weldon, T. P., Higgins, W. E., and Dunn, D. F. 1996. Efficient gabor filter design for texture segmentation. Pattern Recognition 29, 12, 2005--2015.
[28]
Zhang, X., McKay, C., and Sonka, M. 1998. Tissue characterization in intravascular ultrasound images. IEEE Transactions on Medical Imaging 17, 6 (dec.), 889--899.
[29]
Zhu, H., Liang, Y., and Friedman, M. H. 2002. Ivus image segmentation based on contrast. Image Processing Medical Imaging 2002 4684, 1, 1727--1733.

Cited By

View all
  • (2022)Analysis methods of coronary artery intravascular images: A reviewNeurocomputing10.1016/j.neucom.2021.10.124489(27-39)Online publication date: Jun-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
VRCAI '10: Proceedings of the 9th ACM SIGGRAPH Conference on Virtual-Reality Continuum and its Applications in Industry
December 2010
399 pages
ISBN:9781450304597
DOI:10.1145/1900179
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 December 2010

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Gabor wavelet texture analysis
  2. contour detection
  3. coronary artery
  4. intravascular ultrasound (IVUS)

Qualifiers

  • Research-article

Conference

VRCAI '10
Sponsor:

Acceptance Rates

Overall Acceptance Rate 51 of 107 submissions, 48%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)2
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2022)Analysis methods of coronary artery intravascular images: A reviewNeurocomputing10.1016/j.neucom.2021.10.124489(27-39)Online publication date: Jun-2022

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media