Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/1985793.1986008acmconferencesArticle/Chapter ViewAbstractPublication PagesicseConference Proceedingsconference-collections
extended-abstract

Directed test suite augmentation

Published: 21 May 2011 Publication History

Abstract

Test suite augmentation techniques are used in regression testing to identify code elements affected by changes and to generate test cases to cover those elements. Whereas methods and techniques to find affected elements have been extensively researched in regression testing, how to generate new test cases to cover these elements cost-effectively has rarely been studied. It is known that generating test cases is very expensive, so we want to focus on this second step. We believe that reusing existing test cases will help us achieve this task. This research intends to provide a framework for test suite augmentation techniques that will reuse existing test cases to automatically generate new test cases to cover as many affected elements as possible cost-effectively.

References

[1]
T. Apiwattanapong, R. Santelices, P. K. Chittimalli, A. Orso, and M. J. Harrold. Matrix: Maintenance-oriented testing requirements identifier and examiner. In Test.: Acad. Ind. Conf. Pract. Res. Techn., pages 137--146, Aug. 2006.
[2]
A. Baresel, D. Binkley, M. Harman, and B. Korel. Evolutionary testing in the presence of loop-assigned flags: a testability transformation approach. In Proc. Int'l. Symp. Softw. Test. Anal., July 2004.
[3]
S. Bohner and R. Arnold. Software Change Impact Analysis. IEEE Computer Society Press, Los Alamitos, CA, 1996.
[4]
C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. Exe: Automatically generating inputs of death. In Proc. Conf. Comp. Comm. Sec., pages 322--335, Oct 2006.
[5]
T. Y. Chen and R. Merkel. Quasi-random testing. IEEE Trans. Rel., 56(3):562--568, 2007.
[6]
L. Clarke. A system to generate test data and symbolically execute programs. IEEE Trans. Softw. Eng., 2(3):215--222, Sept. 1976.
[7]
E. Díaz, J. Tuya, R. Blanco, and J. Javier Dolado. A tabu search algorithm for structural software testing. Comp. Op. Res., 35(10):3052--3072, 2008.
[8]
S. Elbaum, A. Malishevsky, and G. Rothermel. Test case prioritization: A family of empirical studies. IEEE Trans. Softw. Eng., 28(2):159--182, 2002.
[9]
R. Ferguson and B. Korel. The chaining approach for software test data generation. ACM Trans. Softw. Eng. Meth., 5(1):63--86, Jan. 1996.
[10]
A. Gotlieb, B. Botella, and M. Reuher. Automatic test data generation using constraint solving techniques. In Proc. Int'l. Symp. Softw. Test. Anal., Mar. 1998.
[11]
B. Korel. Automated software test data generation. IEEE Trans. Softw. Eng., 16(8):870--897, Aug. 1990.
[12]
C. Michael, G. McGraw, and M. Shatz. Generating software test data by evolution. IEEE Trans. Softw. Eng., 27(12):1085--1110, Dec. 2001.
[13]
A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems. In Proc. Int'l. Symp. Found. Softw. Eng., Nov. 2004.
[14]
S. Person, M. B. Dwyer, S. Elbaum, and C. S. Păsăreanu. differential symbolic execution. In Proc. Int'l. Symp. Found. Softw. Eng., Nov. 2008.
[15]
D. Qi, A. Roychoudhury, and Z. Liang. Test generation to expose changes in evolving programs. In Proc. Int'l Conf. on Auto. Soft. Eng., 2010.
[16]
G. Rothermel and M. J. Harrold. Selecting tests and identifying test coverage requirements for modified software. In Proc. Int'l Symp. Softw. Test. Anal., 1994.
[17]
G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique. ACM Trans. Softw. Eng. Meth., 6(2):173--210, Apr. 1997.
[18]
R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J. Harrold. Test-suite augmentation for evolving software. In Proc. Int'l Conf. Auto. Softw. Eng., Sept. 2008.
[19]
K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit testing engine for C. In Proc. Int'l Symp. Found. Softw. Eng., pages 263--272, Sept. 2005.
[20]
W. Visser, C. Pasareanu, and S. Khurshid. Test input generation with Java Pathfinder. In Proc. Int'l Symp. Softw. Test. Anal., pages 97--107, July 2004.
[21]
Z. Xu, M. Cohen, and G. Rothermel. Factors affecting the use of genetic algorithms in test suite augmentation. In Gen. Evol. Comp. Conf, July 2010.
[22]
Z. Xu, Y. Kim, M. Kim, G. Rothermel, and M. Cohen. Directed test suite augmentation: Techniques and tradeoffs. In Proc. Int's Symp. Found.of Softw. Eng., Nov. 2010.
[23]
Z. Xu and G. Rothermel. Directed test suite augmentation. In Proc. Asia-Pacific Softw. Eng. Conf., Dec. 2009.
[24]
S. Yoo and M. Harman. Pareto efficient multi-objective test case selection. In Proc. Int'l. Conf. Softw. Test. Anal., pages 140--150, July 2007.

Cited By

View all
  • (2022)Feedback-Driven Incremental Symbolic Execution2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)10.1109/ISSRE55969.2022.00055(505-516)Online publication date: Oct-2022
  • (2019)Branch coverage prediction in automated testingJournal of Software: Evolution and Process10.1002/smr.215831:9Online publication date: 13-Oct-2019
  • (2018)How high will it be? Using machine learning models to predict branch coverage in automated testing2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)10.1109/MALTESQUE.2018.8368454(19-24)Online publication date: Mar-2018
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ICSE '11: Proceedings of the 33rd International Conference on Software Engineering
May 2011
1258 pages
ISBN:9781450304450
DOI:10.1145/1985793
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 May 2011

Check for updates

Author Tags

  1. empirical studies
  2. regression testing
  3. test suite augmentation

Qualifiers

  • Extended-abstract

Conference

ICSE11
Sponsor:
ICSE11: International Conference on Software Engineering
May 21 - 28, 2011
HI, Waikiki, Honolulu, USA

Acceptance Rates

Overall Acceptance Rate 276 of 1,856 submissions, 15%

Upcoming Conference

ICSE 2025

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)10
  • Downloads (Last 6 weeks)1
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Feedback-Driven Incremental Symbolic Execution2022 IEEE 33rd International Symposium on Software Reliability Engineering (ISSRE)10.1109/ISSRE55969.2022.00055(505-516)Online publication date: Oct-2022
  • (2019)Branch coverage prediction in automated testingJournal of Software: Evolution and Process10.1002/smr.215831:9Online publication date: 13-Oct-2019
  • (2018)How high will it be? Using machine learning models to predict branch coverage in automated testing2018 IEEE Workshop on Machine Learning Techniques for Software Quality Evaluation (MaLTeSQuE)10.1109/MALTESQUE.2018.8368454(19-24)Online publication date: Mar-2018
  • (2014)Directed test suite augmentation via exploiting program dependencyProceedings of the 6th International Workshop on Constraints in Software Testing, Verification, and Analysis10.1145/2593735.2593736(1-6)Online publication date: 31-May-2014
  • (2013)Regression tests to expose change interaction errorsProceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering10.1145/2491411.2491430(334-344)Online publication date: 18-Aug-2013

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media