Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2001858.2002040acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
tutorial

Identification of cancer diagnosis estimation models using evolutionary algorithms: a case study for breast cancer, melanoma, and cancer in the respiratory system

Published: 12 July 2011 Publication History
  • Get Citation Alerts
  • Abstract

    In this paper we present results of empirical research work done on the data based identification of estimation models for cancer diagnoses: Based on patients' data records including standard blood parameters, tumor markers, and information about the diagnosis of tumors we have trained mathematical models for estimating cancer diagnoses.
    Several data based modeling approaches implemented in HeuristicLab have been applied for identifying estimators for selected cancer diagnoses: Linear regression, k-nearest neighbor learning, artificial neural networks, and support vector machines (all optimized using evolutionary algorithms) as well as genetic programming. The investigated diagnoses of breast cancer, melanoma, and respiratory system cancer can be estimated correctly in up to 81%, 74%, and 91% of the analyzed test cases, respectively; without tumor markers up to 75%, 74%, and 87% of the test samples are correctly estimated, respectively.

    References

    [1]
    M. Affenzeller and S. Wagner. SASEGASA: A new generic parallel evolutionary algorithm for achieving highest quality results. Journal of Heuristics - Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems, 10:239--263, 2004.
    [2]
    M. Affenzeller, S. Winkler, S. Wagner, and A. Beham. Genetic Algorithms and Genetic Programming - Modern Concepts and Practical Applications. Chapman & Hall / CRC, 2009.
    [3]
    E. Alba, J. G.-N. L. Jourdan, and E.-G. Talbi. Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms. IEEE Congress on Evolutionary Computation 2007, pages 284--290, 2007.
    [4]
    G. L. Andriole, E. D. Crawford, R. L. Grubband, S. S. Buys, D. Chia, T. R. Church, et al. Mortality results from a randomized prostate-cancer screening trial. New England Journal of Medicine, 360(13):1310--1319, 2009.
    [5]
    W. Banzhaf and C. Lasarczyk. Genetic programming of an algorithmic chemistry. In U. O'Reilly, T. Yu, R. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice II, pages 175--190. Ann Arbor, 2004.
    [6]
    N. Bitterlich and J. Schneider. Cut-off-independent tumour marker evaluation using ROC approximation. Anticancer Research, 27:4305--4310, 2007.
    [7]
    C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [8]
    N. Clegg, C. Ferguson, L. True, H. Arnold, A. Moorman, J. Quinn, R. Vessella, and P. Nelson. Molecular characterization of prostatic small-cell neuroendocrine carcinoma. Prostate, 55(1):55--64, 2003.
    [9]
    G. Crombach, H. Würz, F. Herrmann, R. Kreienberg, V. Möbus, P. Schmidt-Rhode, G. Sturm, H. Caffier, and H. Kaesemann. The importance of the scc antigen in the diagnosis and follow-up of cervix carcinoma. Deutsche Medizinische Wochenschrift, 114(18):700--705, 1989.
    [10]
    R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. Wiley Interscience, 2nd edition, 2000.
    [11]
    M. J. Duffy and J. Crown. A personalized approach to cancer treatment: how biomarkers can help. Clinical Chemistry, 54(11):1770--1779, 2008.
    [12]
    A. Eiben and J. Smith. Introduction to Evolutionary Computation. Natural Computing Series. Springer-Verlag Berlin Heidelberg, 2003.
    [13]
    B. Frey, R. Morant, H. Senn, and W. Riesen. Clinical assessment of the new tumor marker tps. International Journal for Cancer Research and Treatment, 17:270--276, 1994.
    [14]
    P. Gold and S. O. Freedman. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological tolerance and absorption techniques. The Journal of Experimental Medicine, 121:439--462, 1965.
    [15]
    J. H. Holland. Adaption in Natural and Artifical Systems. University of Michigan Press, 1975.
    [16]
    J. A. Koepke. Molecular marker test standardization. Cancer, 69:1578--1581, 1992.
    [17]
    R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on Artificial intelligence, volume 2, pages 1137--1143. Morgan Kaufmann, 1995.
    [18]
    H. Koprowski, M. Herlyn, Z. Steplewski, and H. Sears. Specific antigen in serum of patients with colon carcinoma. Science, 212(4490):53--55, 1981.
    [19]
    J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, 1992.
    [20]
    M. LaFleur-Brooks. Exploring Medical Language: A Student-Directed Approach. St. Louis, Missouri, USA: Mosby Elsevier, 7th edition, 2008.
    [21]
    R. S. Lai, C. C. Chen, P. C. Lee, and J. Y. Lu. Evaluation of cytokeratin 19 fragment (cyfra 21-1) as a tumor marker in malignant pleural effusion. Japanese Journal of Clinical Oncology, 29(9):421--424, 199.
    [22]
    L. Ljung. System Identification - Theory For the User, 2nd edition. PTR Prentice Hall, Upper Saddle River, N.J., 1999.
    [23]
    G. J. Mizejewski. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Experimental biology and medicine, 226(5):377--408, 2001.
    [24]
    O. Nelles. Nonlinear System Identification. Springer Verlag, Berlin Heidelberg New York, 2001.
    [25]
    Y. Niv. Muc1 and colorectal cancer pathophysiology considerations. World Journal of Gastroenterology, 14(14):2139--2141, 2008.
    [26]
    D. Nonaka, L. Chiriboga, and B. Rubin. Differential expression of s100 protein subtypes in malignant melanoma, and benign and malignant peripheral nerve sheath tumors. Journal of Cutaneous Pathology, 35(11):1014--1019, 2008.
    [27]
    A. J. Rai, Z. Zhang, J. Rosenzweig, I. ming Shih, T. Pham, E. T. Fung, L. J. Sokoll, and D. W. Chan. Proteomic approaches to tumor marker discovery. Archives of Pathology & Laboratory Medicine, 126(12):1518--1526, 2002.
    [28]
    V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
    [29]
    S. Wagner. Heuristic Optimization Software Systems - Modeling of Heuristic Optimization Algorithms in the HeuristicLab Software Environment. PhD thesis, Johannes Kepler University Linz, 2009.
    [30]
    S. Wagner and M. Affenzeller. SexualGA: Gender-specific selection for genetic algorithms. In N. Callaos, W. Lesso, and E. Hansen, editors, Proceedings of the 9th World Multi-Conference on Systemics, Cybernetics and Informatics (WMSCI) 2005, volume 4, pages 76--81. International Institute of Informatics and Systemics, 2005.
    [31]
    P. W. Williams and H. D. Gray. Gray's anatomy. New York: C. Livingstone, 37th edition, 1989.
    [32]
    S. Winkler. Evolutionary System Identification - Modern Concepts and Practical Applications. PhD thesis, Institute for Formal Models and Verification, Johannes Kepler University Linz, 2008.
    [33]
    S. Winkler, M. Affenzeller, W. Jacak, and H. Stekel. Classification of tumor marker values using heuristic data mining methods. In Proceedings of the GECCO 2010 Workshop on Medical Applications of Genetic and Evolutionary Computation (MedGEC 2010), 2010.
    [34]
    S. Winkler, M. Affenzeller, G. Kronberger, M. Kommenda, S. Wagner, W. Jacak, and H. Stekel. Feature selection in the analysis of tumor marker data using evolutionary algorithms. In Proceedings of the 7th International Mediterranean and Latin American Modelling Multiconference, pages 1--6, 2010.
    [35]
    B. W. Yin, A. Dnistrian, and K. O. Lloyd. Ovarian cancer antigen CA125 is encoded by the MUC16 mucin gene. International Journal of Cancer, 98(5):737--40, 2002.
    [36]
    K. Yonemori, M. Ando, T. S. Taro, N. Katsumata, K. Matsumoto, Y. Yamanaka, T. Kouno, C. Shimizu, and Y. Fujiwara. Tumor-marker analysis and verification of prognostic models in patients with cancer of unknown primary, receiving platinum-based combination chemotherapy. Journal of Cancer Research and Clinical Oncology, 132(10):635--642, 2006.
    [37]
    L. Zhong, X. Zhou, K. Wei, X. Yang, C. Ma, C. Zhang, and Z. Zhang. Application of serum tumor markers and support vector machine in the diagnosis of oral squamous cell carcinoma. Shanghai Kou Qiang Yi Xue (Shanghai Journal of Stomatology), 17(5):457--460, 2008.

    Cited By

    View all
    • (2023)Automatic design of machine learning via evolutionary computation: A surveyApplied Soft Computing10.1016/j.asoc.2023.110412143(110412)Online publication date: Aug-2023
    • (2023)A novel approach for human diseases prediction using nature inspired computing & machine learning approachMultimedia Tools and Applications10.1007/s11042-023-16236-683:6(17773-17809)Online publication date: 13-Jul-2023
    • (2023)Emperor penguin optimization algorithm- and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus imagesSoft Computing10.1007/s00500-023-08449-628:3(2431-2467)Online publication date: 27-May-2023
    • Show More Cited By

    Index Terms

    1. Identification of cancer diagnosis estimation models using evolutionary algorithms: a case study for breast cancer, melanoma, and cancer in the respiratory system

          Recommendations

          Comments

          Information & Contributors

          Information

          Published In

          cover image ACM Conferences
          GECCO '11: Proceedings of the 13th annual conference companion on Genetic and evolutionary computation
          July 2011
          1548 pages
          ISBN:9781450306904
          DOI:10.1145/2001858
          Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

          Sponsors

          Publisher

          Association for Computing Machinery

          New York, NY, United States

          Publication History

          Published: 12 July 2011

          Permissions

          Request permissions for this article.

          Check for updates

          Author Tags

          1. cancer diagnosis estimation
          2. data mining
          3. machine learning
          4. statistical analysis
          5. tumor marker data

          Qualifiers

          • Tutorial

          Conference

          GECCO '11
          Sponsor:

          Acceptance Rates

          Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)10
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 10 Aug 2024

          Other Metrics

          Citations

          Cited By

          View all
          • (2023)Automatic design of machine learning via evolutionary computation: A surveyApplied Soft Computing10.1016/j.asoc.2023.110412143(110412)Online publication date: Aug-2023
          • (2023)A novel approach for human diseases prediction using nature inspired computing & machine learning approachMultimedia Tools and Applications10.1007/s11042-023-16236-683:6(17773-17809)Online publication date: 13-Jul-2023
          • (2023)Emperor penguin optimization algorithm- and bacterial foraging optimization algorithm-based novel feature selection approach for glaucoma classification from fundus imagesSoft Computing10.1007/s00500-023-08449-628:3(2431-2467)Online publication date: 27-May-2023
          • (2022)Novel Improved Salp Swarm Algorithm: An Application for Feature SelectionSensors10.3390/s2205171122:5(1711)Online publication date: 22-Feb-2022
          • (2022)Genetic heterogeneity analysis using genetic algorithm and network scienceProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3529027(763-766)Online publication date: 9-Jul-2022
          • (2022)A review on machine learning techniques for the assessment of image grading in breast mammogramInternational Journal of Machine Learning and Cybernetics10.1007/s13042-022-01546-213:9(2609-2635)Online publication date: 1-Apr-2022
          • (2021)Feature Selection for Polygenic Risk Scores using Genetic Algorithm and Network Science2021 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC45853.2021.9504993(802-808)Online publication date: 28-Jun-2021
          • (2021)Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification▪Knowledge-Based Systems10.1016/j.knosys.2021.107218227:COnline publication date: 5-Sep-2021
          • (2020)Feature extraction and I-NB classification of CT images for early lung cancer detectionMaterials Today: Proceedings10.1016/j.matpr.2020.04.89633(3334-3341)Online publication date: 2020
          • (2019)Island Model Genetic Algorithm for Feature Selection in Non-Traditional Credit Risk Evaluation2019 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC.2019.8790057(2771-2778)Online publication date: Jun-2019
          • Show More Cited By

          View Options

          Get Access

          Login options

          View options

          PDF

          View or Download as a PDF file.

          PDF

          eReader

          View online with eReader.

          eReader

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media