Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2023607.2023629acmotherconferencesArticle/Chapter ViewAbstractPublication PagescompsystechConference Proceedingsconference-collections
research-article

Emotion recognition using bimodal data fusion

Published: 16 June 2011 Publication History

Abstract

This paper proposes a bimodal system for emotion recognition that uses face and speech analysis. Hidden Markov models - HMMs are used to learn and to describe the temporal dynamics of the emotion clues in the visual and acoustic channels. This approach provides a powerful method enabling to fuse the data we extract from separate modalities. The paper presents the best performing models and the results of the proposed recognition system.

References

[1]
Caridakis, G., L. Malatesta, L. Kessous, N. Amir, A. Raouzaiou, K. Karpouzis. Modeling naturalistic affective states via facial and vocal expressions recognition. In ICMI '06: Proceedings of the 8th international conference on Multimodal interfaces, pages 146--154, New York, NY, USA, 2006.
[2]
Ekman, P., W. V. Friesen. Facial action coding system: investigator's guide. Consulting Psychologists Press, Palo Alto, 1978.
[3]
Fellenz, W. A., J. G. Taylor, R. Cowie, E. D. Cowie, F. Piat, S. D. Kollias, C. Orovas, B. Apolloni. On emotion recognition of faces and of speech using neuralnetworks, fuzzy logic and the assess system. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN'00, 2000.
[4]
Freund, Y., R. E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. Journal of Computer and System Science, 55:119--139, 1997.
[5]
Han, M. J., J. H. Hsu, K. T. Song, F. Y. Chang. A new information fusion method for bimodal robotic emotion recognition. JCP, 3(7):39--47, 2008.
[6]
Martin, O., I. Kotsia, B. Macq, I. Pita. The eNTERFACE' 05 Audio-Visual Emotion Database. In 22nd International Conference on Data Engineering Workshops. ICDEW'06, page 8, 2006.
[7]
Ojala, T., M. Pietikainen, T. Maenpaa. Multiresolution grayscale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7):971--987, 2002.
[8]
Paleari, M., C. L. Lisetti. Toward multimodal fusion of affective cues. In Proceedings of the 1st ACM international workshop on Human-centered multimedia, pages 99--108, 2006.
[9]
Paleari, M., B. Huet. Toward emotion indexing of multimedia excerpts. In Content-Based Multimedia Indexing, 2008. CBMI 2008. International Workshop on, pages 425--432, June 2008.
[10]
Sebe N., I. Cohen, T. Gevers, T. S. Huang. Emotion recognition based on joint visual and audio cues. Pattern Recognition, International Conference on, 1:1136--1139, 2006.
[11]
Song, M., J. Bu, C. Chen, N. Li. Audio-visual based emotion recognition, a new approach. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 2:1020--1025, 2004.
[12]
Wimmer, M., B. Schuller, D. Arsic, B. Radig, G. Rigoll. Low-level fusion of audio and video feature for multi-modal emotion recognition. In 3rd International Conference on Computer Vision Theory and Applications. VISAPP, volume 2, pages 145--151, Madeira, Portugal, January 2008.
[13]
Zeng, Z., Y. Hu, G. I. Roisman, Z. Wen, Y. Fu, T. S. Huang. Audio-visual spontaneous emotion recognition. In Artifical Intelligence for Human Computing, volume 4451 of Lecture Notes in Computer Science, pages 72--90. Springer, 2007.

Cited By

View all
  • (2024)LaWNet: Audio-Visual Emotion Recognition by Listening and Watching2024 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN60899.2024.10651101(1-8)Online publication date: 30-Jun-2024
  • (2024)Coordinated-joint translation fusion framework with sentiment-interactive graph convolutional networks for multimodal sentiment analysisInformation Processing & Management10.1016/j.ipm.2023.10353861:1(103538)Online publication date: Jan-2024
  • (2023)An IOT-based Language Recognition System for Indigenous Languages using Integrated CNN and RNN2023 3rd International Conference on Smart Data Intelligence (ICSMDI)10.1109/ICSMDI57622.2023.00086(451-456)Online publication date: Mar-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
CompSysTech '11: Proceedings of the 12th International Conference on Computer Systems and Technologies
June 2011
688 pages
ISBN:9781450309172
DOI:10.1145/2023607
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • TELECVB: TELECOMS - Varna, Bulgaria
  • Austrian Comp Soc: Austrian Computer Society
  • BPCSB: BULGARIAN PUBLISHING COMPANY - Sofia, Bulgaria
  • IOMAIBB: INSTITUTE OF MATHEMATICS AND INFORMATICS - BAS, Bulgaria
  • NBUBB: New Bulgarian University - BAS, Bulgaria
  • Technical University of Sofia
  • IOIACTBB: INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES - BAS, Bulgaria
  • TSFPS: THE SEVENTH FRAMEWORK PROGRAMME - SISTER
  • ERSVB: EURORISC SYSTEMS - Varna, Bulgaria
  • FOSEUB: FEDERATION OF THE SCIENTIFIC ENGINEERING UNIONS - Bulgaria
  • UORB: University of Ruse, Bulgaria
  • BBPSB: BULGARIAN BUSINESS PUBLICATIONS - Sofia, Bulgaria
  • CASTUVTB: CYRIL AND ST. METHODIUS UNIVERSITY of Veliko Tarnovo, Bulgaria
  • TECHUVB: Technical University of Varna, Bulgaria
  • LLLPET: LIFELONG LEARNING PROGRAMME - ETN TRICE
  • IEEEBSB: IEEE Bulgaria Section, Bulgaria

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 June 2011

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. bimodal data fusion
  2. emotion recognition

Qualifiers

  • Research-article

Conference

CompSysTech '11
Sponsor:
  • TELECVB
  • Austrian Comp Soc
  • BPCSB
  • IOMAIBB
  • NBUBB
  • IOIACTBB
  • TSFPS
  • ERSVB
  • FOSEUB
  • UORB
  • BBPSB
  • CASTUVTB
  • TECHUVB
  • LLLPET
  • IEEEBSB

Acceptance Rates

Overall Acceptance Rate 241 of 492 submissions, 49%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)LaWNet: Audio-Visual Emotion Recognition by Listening and Watching2024 International Joint Conference on Neural Networks (IJCNN)10.1109/IJCNN60899.2024.10651101(1-8)Online publication date: 30-Jun-2024
  • (2024)Coordinated-joint translation fusion framework with sentiment-interactive graph convolutional networks for multimodal sentiment analysisInformation Processing & Management10.1016/j.ipm.2023.10353861:1(103538)Online publication date: Jan-2024
  • (2023)An IOT-based Language Recognition System for Indigenous Languages using Integrated CNN and RNN2023 3rd International Conference on Smart Data Intelligence (ICSMDI)10.1109/ICSMDI57622.2023.00086(451-456)Online publication date: Mar-2023
  • (2022)Real-time emotional health detection using fine-tuned transfer networks with multimodal fusionNeural Computing and Applications10.1007/s00521-022-06913-235:31(22935-22948)Online publication date: 22-Jan-2022
  • (2021)Multimodal emotion recognition with hierarchical memory networksIntelligent Data Analysis10.3233/IDA-20518325:4(1031-1045)Online publication date: 9-Jul-2021
  • (2020)The use of Automatic Speech Recognition in Education for Identifying Attitudes of the Speakers2020 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE)10.1109/CSDE50874.2020.9411528(1-7)Online publication date: 16-Dec-2020
  • (2020)Different Contextual Window Sizes Based RNNs for Multimodal Emotion Detection in Interactive ConversationsIEEE Access10.1109/ACCESS.2020.30056648(119516-119526)Online publication date: 2020
  • (2019)Multimodal Big Data Affective AnalyticsMultimodal Analytics for Next-Generation Big Data Technologies and Applications10.1007/978-3-319-97598-6_3(45-71)Online publication date: 19-Jul-2019
  • (2018)Multimodal-multisensor affect detectionThe Handbook of Multimodal-Multisensor Interfaces10.1145/3107990.3107998(167-202)Online publication date: 1-Oct-2018
  • (2018)Self-Attentive Feature-Level Fusion for Multimodal Emotion Detection2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)10.1109/MIPR.2018.00043(196-201)Online publication date: Apr-2018
  • Show More Cited By

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media