Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2076623.2076633acmotherconferencesArticle/Chapter ViewAbstractPublication PagesideasConference Proceedingsconference-collections
research-article

A clustering-based visualization of colocation patterns

Published: 21 September 2011 Publication History

Abstract

Extraction of interesting colocations in geo-referenced data is one of the major tasks in spatial pattern mining. The goal is to find sets of spatial object-types with instances located in the same neighborhood. In this context, the main drawback is the visualization and interpretation of extracted patterns by domain experts. Indeed, common textual representation of colocations loses important spatial information such as the position, the orientation or the spatial distribution of the patterns. To overcome this problem, we propose a new clustering-based visualization technique deeply integrated in the colocation mining algorithm. This new simple, concise and intuitive cartographic visualization considers both spatial information and expert practices. This proposition has been integrated in a Geographic Information System and experimented on a real-world geological data set. Domain experts confirm the added-value of this visualization approach.

References

[1]
R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, pages 487--499. Morgan Kaufmann, 1994.
[2]
G. L. Andrienko and N. V. Andrienko. Knowledge-based visualization to support spatial data mining. In IDA, pages 149--160, 1999.
[3]
G. L. Andrienko, N. V. Andrienko, S. Rinzivillo, M. Nanni, and D. Pedreschi. A visual analytics toolkit for cluster-based classification of mobility data. In N. Mamoulis, T. Seidl, T. B. Pedersen, K. Torp, and I. Assent, editors, SSTD, volume 5644 of Lecture Notes in Computer Science, pages 432--435. Springer, 2009.
[4]
A. Appice, M. Ceci, A. Lanza, F. A. Lisi, and D. Malerba. Discovery of spatial association rules in geo-referenced census data: A relational mining approach. Intell. Data Anal., 7(6):541--566, 2003.
[5]
V. Bogorny, J. F. Valiati, S. da Silva Camargo, P. M. Engel, B. Kuijpers, and L. O. Alvares. Mining maximal generalized frequent geographic patterns with knowledge constraints. In ICDM, pages 813--817. IEEE Computer Society, 2006.
[6]
C. Brunk, J. Kelly, and R. Kohavi. Mineset: An integrated system for data mining. In KDD, pages 135--138, 1997.
[7]
M. Ceci, A. Appice, and D. Malerba. Discovering emerging patterns in spatial databases: A multi-relational approach. In PKDD'07, volume 4702 of LNCS, pages 390--397. Springer, 2007.
[8]
M. Celik, J. M. Kang, and S. Shekhar. Zonal co-location pattern discovery with dynamic parameters. In IEEE ICDM'07, pages 433--438. IEEE Computer Society, 2007.
[9]
M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In KDD, pages 226--231. 1996.
[10]
F. Flouvat, F. D. Marchi, and J.-M. Petit. The izi project: Easy prototyping of interesting pattern mining algorithms. In T. Theeramunkong, C. Nattee, P. J. L. Adeodato, N. V. Chawla, P. Christen, P. Lenca, J. Poon, and G. J. Williams, editors, PAKDD Workshops, volume 5669 of Lecture Notes in Computer Science, pages 1--15. Springer, 2009.
[11]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The WEKA Data Mining Software: An Update, volume 11. 2009.
[12]
J. Han and M. Kamber. Data Mining, Second Edition: Concepts and Techniques. Morgan Kaufmann, January 2006.
[13]
Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns from spatial data sets: A general approach. IEEE Trans. Knowl. Data Eng., 16(12):1472--1485, 2004.
[14]
D. A. Keim. Information visualization and visual data mining. IEEE Trans. Vis. Computer. Graph., 8(1):1--8, 2002.
[15]
K. Koperski and J. Han. Discovery of spatial association rules in geographic information databases. In M. J. Egenhofer and J. R. Herring, editors, SSD, volume 951 of Lecture Notes in Computer Science, pages 47--66. Springer, 1995.
[16]
C. K.-S. Leung, P. Irani, and C. L. Carmichael. Wifisviz: Effective visualization of frequent itemsets. In ICDM, pages 875--880. IEEE Computer Society. 2008.
[17]
F. A. Lisi and D. Malerba. Inducing multi-level association rules from multiple relations. Machine Learning, 55(2):175--210, 2004.
[18]
D. Malerba. A relational perspective on spatial data mining. International Journal of Data Mining, Modelling and Management, 1(1):103--118, 2008.
[19]
H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowledge discovery. Data Min. Knowl. Discov., 1(3):241--258, 1997.
[20]
D. Pelleg and A. W. Moore. X-means: Extending k-means with efficient estimation of the number of clusters. In P. Laugley, editor, ICML, pages 727--734. Morgan Kaufmann, 2000.
[21]
S. Shekhar and Y. Huang. Discovering spatial co-location patterns: A summary of results. In C. S. Jensen, M. Schneider, B. Seeger, and V. J. Tsotras, editors, SSTD, volume 2121 of Lecture Notes in Computer Science, pages 236--256. Springer, 2001.
[22]
J. S. Yoo and S. Shekhar. A joinless approach for mining spatial colocation patterns. IEEE Trans. Knowl. Data Eng., 18(10):1323--1337, 2006.

Cited By

View all
  • (2021)AI Applied to Air Pollution and Environmental Health: A Case Study on Hypothesis GenerationHumanity Driven AI10.1007/978-3-030-72188-6_10(195-222)Online publication date: 2-Dec-2021
  • (2015)Domain-driven co-location miningGeoinformatica10.1007/s10707-014-0209-319:1(147-183)Online publication date: 1-Jan-2015
  • (2015)A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollutionJournal of Geographical Systems10.1007/s10109-015-0216-417:3(249-274)Online publication date: 25-Jun-2015
  • Show More Cited By

Index Terms

  1. A clustering-based visualization of colocation patterns

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    IDEAS '11: Proceedings of the 15th Symposium on International Database Engineering & Applications
    September 2011
    274 pages
    ISBN:9781450306270
    DOI:10.1145/2076623
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 September 2011

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. colocation mining
    2. heuristic clustering
    3. soil erosion
    4. visualization

    Qualifiers

    • Research-article

    Funding Sources

    • French contract

    Conference

    IDEAS '11

    Acceptance Rates

    Overall Acceptance Rate 74 of 210 submissions, 35%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)AI Applied to Air Pollution and Environmental Health: A Case Study on Hypothesis GenerationHumanity Driven AI10.1007/978-3-030-72188-6_10(195-222)Online publication date: 2-Dec-2021
    • (2015)Domain-driven co-location miningGeoinformatica10.1007/s10707-014-0209-319:1(147-183)Online publication date: 1-Jan-2015
    • (2015)A generic regional spatio-temporal co-occurrence pattern mining model: a case study for air pollutionJournal of Geographical Systems10.1007/s10109-015-0216-417:3(249-274)Online publication date: 25-Jun-2015
    • (2012)Mining probabilistic datasets verticallyProceedings of the 16th International Database Engineering & Applications Sysmposium10.1145/2351476.2351500(199-204)Online publication date: 8-Aug-2012
    • (2012)A constrained frequent pattern mining system for handling aggregate constraintsProceedings of the 16th International Database Engineering & Applications Sysmposium10.1145/2351476.2351479(14-23)Online publication date: 8-Aug-2012
    • (2012)Spatial Interestingness Measures for Co-location Pattern MiningProceedings of the 2012 IEEE 12th International Conference on Data Mining Workshops10.1109/ICDMW.2012.116(821-826)Online publication date: 10-Dec-2012

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media