Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Skew Dependence of Nanophotonic Devices Based on Optical Near-Field Interactions

Published: 01 February 2012 Publication History

Abstract

We examine the timing dependence of nanophotonic devices based on optical excitation transfer via optical near-field interactions at the nanometer scale. We theoretically analyze the dynamic behavior of a two-input nanophotonic switch composed of three quantum dots based on a density matrix formalism while assuming arrival-time differences, or skew, between the inputs. The analysis reveals that the nanophotonic switch is resistant to a skew longer than the input signal duration, and the tolerance to skew is asymmetric with respect to the two inputs. The skew dependence is also experimentally examined based on near-field spectroscopy of InGaAs quantum dots, showing good agreement with the theory. Elucidating the dynamic properties of nanophotonics, together with the associated spatial and energy dissipation attributes at the nanometer scale, will provide critical insights for novel system architectures.

References

[1]
Akahane, K. Kawamura, T., Okino, K., Koyama, H., Lan, S., Okada, Y., Kawabe, M., and Tosa, M. 1998. Highly packed InGaAs quantum dots on GaAs(311)B. Appl. Phys. Lett. 73, 3411, 1--3.
[2]
Akahane, K., Ohtani, N., Okada, Y., and Kawabe, M. 2002. Fabrication of ultra-high density InAs-stacked quantum dots by strain-controlled growth on InP(3 1 1)B substrate. J. Cryst. Growth 245, 31--36.
[3]
Akahane, K., Yamamoto, N., and Tsuchiya, M. 2008. Highly stacked quantum-dot laser fabricated using a strain compensation technique. Appl. Phys. Lett. 93, 041121, 1--3.
[4]
Becker, W. 2005. Advanced Time-Correlated Single Photon Counting Techniques. Springer.
[5]
Carmichael, H. J. 1999. Statistical Methods in Quantum Optics 1. Springer-Verlag.
[6]
Collier, C. P., Wong, E. W., Belohradsky, M., Raymo, F. M., Stoddard, J. F., Kuekes, P. J., Williams, R. S., and Heath, J. R. 1999. Electronically configurable molecular-based logic gates. Science 285, 391--394.
[7]
Crooker, S. A., Hollingsworth, J. A., Tretiak, S., and Klimov, V. I. 2002. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: Towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802, 1--4.
[8]
Dai, J., Wang, L., and Lombardi, F. 2010. An information-theoretic analysis of quantum-dot cellular automata for defect tolerance. ACM J. Emerg. Technol. Comput. Syst. 6, 9, 1--19.
[9]
Franzl, T., Klar, T. A., Schietinger, S., Rogach, A. L., and Feldmann, J. 2004. Exciton recycling in graded gap nanocrystal structures. Nano Lett. 4, 1599--1603.
[10]
Hauck, S. 1995. Asynchronous design methodologies: An overview. Proc. IEEE 83, 69--93.
[11]
Heitz, R., Mukhametzhanov, I., Chen, P., and Madhukar A. 1998. Excitation transfer in self-organized asymmetric quantum dot pairs. Phys. Rev. B 58, R10151--R10154.
[12]
Hori, H. 2001. Electronic and electromagnetic properties in nanometer scales. In Optical and Electronic Process of Nano-Matters. M. Ohtsu Ed., Kluwer Academic, 1--55.
[13]
Itoh, T., Furumiya, M., Ikehara, T., and Gourdon, C. 1990. Size-dependent radiative decay time of confined excitons in CuCl microcrystals. Solid State Comm. 73, 271--274.
[14]
Kagan, C. R., Murray, C. B., Nirmal, M., and Bawendi M. G. 1996. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 76, 1517--1520.
[15]
Kawazoe, T., Kobayashi, K., Sangu, S., and Ohtsu, M. 2003. Demonstration of a nanophotonic switching operation by optical near-field energy transfer. Appl. Phys. Lett. 82, 2957--2959.
[16]
Kawazoe, T., Kobayashi, K., Akahane, K., Naruse, M., Yamamoto N., and Ohtsu, M. 2006. Demonstration of nanophotonic NOT gate using near-field optically coupled quantum dots. Appl. Phys. B 84, 243--246.
[17]
Kawazoe, T., Ohtsu, M., Aso, S., Sawado, Y., Hosoda, Y., Yoshizawa, K., Akahane, K., Yamamoto, N., and Naruse, M. 2011. Two-dimensional array of room-temperature nanophotonic logic gates using InAs quantum dots in mesa structures. Appl. Phys. B, 103, 537--546.
[18]
Keeler, G. A., Nelson, B. E., Agarwal, D., and Miller, D. A. B. 2000. Skew and jitter removal using short optical pulses for optical interconnection. IEEE Photon. Technol. Lett. 12, 714--716.
[19]
Lee, J., Adachi, S., Peper, F., and Mashiko, S. 2005. Delay-insensitive computation in asynchronous cellular automata. J. Comput. Syst. 70, 201--220.
[20]
Matsuda, K., Saiki, T., Nomura, S., and Aoyagi, Y. 2005. Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy. Appl. Phys. Lett. 4, 043112, 1--3.
[21]
Mazur, Y. I., Wang, Z. M., Tarasov, G. G., Xiao, M., Salamo, G. J., Tomm, J. W., Talalaev, V., and Kissel. H. 2005. Interdot carrier transfer in asymmetric bilayer InAs/GaAs quantum dot structures. Appl. Phys. Lett. 86, 063102, 1--3.
[22]
Naruse, M., Mitsu, H., Furuki, M., Iwasa, I., Sato, Y., Tatsuura, S. and Tian, M. 2003. Femtosecond timing measurement and control using ultrafast organic thin films. Appl. Phys. Lett. 83, 4869--4871.
[23]
Naruse, M., Miyazaki, T., Kawazoe, T., Sangu, S., Kobayashi, K., Kubota, F., and Ohtsu, M. 2005. Nanophotonic computing based on optical near-field interactions between quantum dots. IEICE Trans. Electron. E88-C, 1817--1823.
[24]
Naruse, M., Kawazoe, T., Sangu, S., Kobayashi, K., and Ohtsu, M. 2006. Optical interconnects based on optical far- and near-field interactions for high-density data broadcasting. Opt. Express 14, 306--313.
[25]
Naruse, M., Hori, H., Kobayashi, K., and Ohtsu, M. 2007. Tamper resistance in optical excitation transfer based on optical near-field interactions. Opt. Lett. 32, 1761--1763.
[26]
Naruse, M., Kawazoe, T., Ohta, R., Nomura, W., and Ohtsu, M. 2009. Optimal mixture of randomly dispersed quantum dots for optical excitation transfer via optical near-field interactions. Phys. Rev. B 80, 125325, 1--3.
[27]
Naruse, M., Hori, H., Kobayashi, K., Holmström, P., Thylén, L., and Ohtsu, M. 2010. Lower bound of energy dissipation in optical excitation transfer via optical near-field interactions. Opt. Express 18, A544--A553.
[28]
Ohtsu, M., Kobayashi, K., Kawazoe, T., Yatsui, T., and Naruse, M. 2008. Principles of Nanophotonics. Taylor and Francis.
[29]
Peper, F., Lee, J., Abo, F., Isokawa, T., Adachi, S., Matsui, N., and Mashiko, S. 2004. Fault-tolerance in nanocomputers: A cellular array approach. IEEE Trans. Nanotechnol. 3, 187--201.
[30]
Pistol, C., Dwyer, C., and Lebeck, A. R. 2008. Nanoscale optical computing using resonance energy transfer logic. IEEE Micro 28, 7--18.
[31]
Remacle, F., Speiser, S., and Levine, R. D. 2001. Intermolecular and intramolecular logic gates. J. Phys. Chem. B 105, 5589--5591.
[32]
Unold, T., Mueller, K., Lienau, C., Elsaesser, T., and Wieck, A. D. 2005. Optical control of excitons in a pair of quantum dots coupled by the dipole-dipole interaction. Phys. Rev. Lett. 94, 137404, 1--3.
[33]
Warner, M. G. and Hutchison, J. E. 2003. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mat. 2, 272--277.
[34]
Xu, Z. Y., Lu, Z. D., Yang, X. P., Yuan, Z. L., Zheng, B. Z., Xu, J. Z., Ge, W. K., Wang, Y., Wang, J., and Chang, L. L. 1996. Carrier relaxation and thermal activation of localized excitons in self-organized InAs multilayers grown on GaAs substrates. Phys. Rev. B 54, 11528--11531.
[35]
Yan, H., Choe, H. S., Nam, S., Hu, Y., Das, S., Klemic, J. F., Ellenbogen, J. C., and Liever, C. M. 2011. Programmable nanowire circuits for nanoprocessors. Nature 470, 240--244.
[36]
Yeow, E. K. L. and Steer, R. P. 2003. Energy transfer involving higher electronic states: A new direction for molecular logic gates. Chem Phys. Lett. 377, 391--398.
[37]
Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S. J., Yoo, J., and Yi, G.-C. 2007. Nanophotonic switch using ZnO nanorod double-quantum-well structures. Appl. Phys. Lett. 90, 223110, 1--3.
[38]
Yatsui, T., Ryu, Y., Morishima, T., Nomura, W., Kawazoe, T., Yonezawa, T., Washizu, M., Fujita, H., and Ohtsu, M. 2010. Self-assembly method of linearly aligning ZnO quantum dots for a nanophotonic signal trasmission device. Appl. Phys. Lett. 96, 133106, 1--3.

Cited By

View all
  • (2019)Dressed Photon as an Off-Shell Quantum Field10.1016/bs.po.2018.11.002Online publication date: 2019
  • (2018)Historical Review of Dressed Photons: Experimental Progress and Required TheoriesProgress in Nanophotonics 510.1007/978-3-319-98267-0_1(1-51)Online publication date: 30-Aug-2018
  • (2017)Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structureOptics Express10.1364/OE.25.02682525:22(26825)Online publication date: 18-Oct-2017
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 8, Issue 1
February 2012
124 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2093145
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 01 February 2012
Accepted: 01 June 2011
Revised: 01 May 2011
Received: 01 October 2010
Published in JETC Volume 8, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tag

  1. Nanophotonics

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Dressed Photon as an Off-Shell Quantum Field10.1016/bs.po.2018.11.002Online publication date: 2019
  • (2018)Historical Review of Dressed Photons: Experimental Progress and Required TheoriesProgress in Nanophotonics 510.1007/978-3-319-98267-0_1(1-51)Online publication date: 30-Aug-2018
  • (2017)Implementation of pulse timing discriminator functionality into a GeSbTe/GeCuTe double layer structureOptics Express10.1364/OE.25.02682525:22(26825)Online publication date: 18-Oct-2017
  • (2017)Progress in Dressed Photon Technology and the FutureProgress in Nanophotonics 410.1007/978-3-319-49013-7_1(1-18)Online publication date: 19-Feb-2017
  • (2014)From classical to modern near-field optics and the futureOptical Review10.1007/s10043-014-0143-521:6(905-910)Online publication date: 27-Nov-2014
  • (2013)Devices Using Dressed PhotonsDressed Photons10.1007/978-3-642-39569-7_5(89-136)Online publication date: 10-Nov-2013
  • (2013)Nanophotonic Systems Based on Localized and Hierarchical Optical Near-Field ProcessesHandbook of Nano-Optics and Nanophotonics10.1007/978-3-642-31066-9_29(875-907)Online publication date: 16-Apr-2013
  • (2012)Energy dissipation in energy transfer mediated by optical near-field interactions and their interfaces with optical far-fieldsApplied Physics Letters10.1063/1.4729003100:24(241102)Online publication date: 11-Jun-2012

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media