Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Using Clustering and Metric Learning to Improve Science Return of Remote Sensed Imagery

Published: 01 May 2012 Publication History
  • Get Citation Alerts
  • Abstract

    Current and proposed remote space missions, such as the proposed aerial exploration of Titan by an aerobot, often can collect more data than can be communicated back to Earth. Autonomous selective downlink algorithms can choose informative subsets of data to improve the science value of these bandwidth-limited transmissions. This requires statistical descriptors of the data that reflect very abstract and subtle distinctions in science content. We propose a metric learning strategy that teaches algorithms how best to cluster new data based on training examples supplied by domain scientists. We demonstrate that clustering informed by metric learning produces results that more closely match multiple scientists’ labelings of aerial data than do clusterings based on random or periodic sampling. A new metric-learning strategy accommodates training sets produced by multiple scientists with different and potentially inconsistent mission objectives. Our methods are fit for current spacecraft processors (e.g., RAD750) and would further benefit from more advanced spacecraft processor architectures, such as OPERA.

    References

    [1]
    Arthur, D., Manthey, B., and Roglin, H. 2009. k-Means has polynomial smoothed complexity. In Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science. IEEE, 405--414.
    [2]
    Averbuch, A., Gabber, E., Gordissky, B., and Medan, Y. 1990. A parallel FFT on an MIMD machine* 1. Parall. Comput. 15, 1--3, 61--74.
    [3]
    Burghouts, G. and Geusebroek, J. 2009. Performance evaluation of local colour invariants. Comput. Vision Image Understand. 113, 1, 48--62.
    [4]
    Calderon, F., Thompson, D. R., and Wettergreen, D. 2008. Autonomous rover reflectance spectroscopy with dozens of targets. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS).
    [5]
    Castano, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelley, P., Greeley, R., Lemmon, M., Castano, R., and Chien, S. 2008. Automatic detection of dust devils and clouds on Mars. Machine Vision Appl. 19, 5--6, 467--482.
    [6]
    Castaño, R., Judd, M., Anderson, R., and Estlin, T. 2003. Machine learning challenges in Mars rover traverse science. In Proceedings of the ICML Workshop on Machine Learning Technologies for Autonomous Space.
    [7]
    Castaño, R., Estlin, T., Anderson, R. C., Gaines, D. M., Castano, A., Bornstein, B., Chouinard, C., and Judd, M. 2007. Oasis: Onboard autonomous science investigation system for opportunistic rover science. J. Field Robotics, 379--397.
    [8]
    Chen, J., Zhao, Z., Ye, J., and Liu, H. 2007. Nonlinear adaptive distance metric learning for clustering. In Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 123--132.
    [9]
    Chen, L., Liao, H., Ko, M., Lin, J., and Yu, G. 2000. A new LDA-based face recognition system which can solve the small sample size problem. Pattern Recog. 33, 10, 1713--1726.
    [10]
    Chien, S., Sherwood, R., Tran, D., Cichy, B., Rabideau, G., Castano, R., Davies, A., Mandl, D., Frye, S., Trout, B., et al. 2005. Using autonomy flight software to improve science return on Earth Observing One. J. Aerospace Comput. Infor. Comm. 2, 4, 196--216.
    [11]
    Clough, B. 2002. Metrics, schmetrics! How the heck do you determine a UAV’s autonomy anyway. In Proceedings of the Performance Metrics for Intelligent Systems Workshop.
    [12]
    Duda, R., Hart, P., and Stork, D. 2000. Pattern Classification. Wiley-Interscience, New York, NY.
    [13]
    Duin, R. and Loog, M. 2004. Linear dimensionality reduction via a heteroscedastic extension of LDA: The Chernoff criterion. IEEE Trans. Pattern Anal. Machine Intell. 26, 6, 732--739.
    [14]
    Dvorak, D. et al. 2009. NASA study on flight software complexity.
    [15]
    Elfes, A., Hall, J., Kulczycki, E., Clouse, D., Morfopoulos, A., Montgomery, J., Cameron, J., Ansar, A., and Machuzak, R. 2008. Autonomy architecture for aerobot exploration of Saturnian moon Titan. IEEE Aerospace and Electronic Systems Mag. 23, 7, 16--24.
    [16]
    Elkan, C. 2003. Using the triangle inequality to accelerate k-means. In Proceedings of the Internatinoal Conference on Machine Learning. Vol. 20, 147--153.
    [17]
    Estlin, T., Bornstein, B., Gaines, D., Thompson, D., Castaño, R., Anderson, R., de Granville, C., Burl, M., Judd, M., and Chien, S. 2010. Aegis automated targeting for the MER opportunity rover. In Proceedings of the International Symposium on Space Artificial Intelligence, Robotics, and Automation for Space.
    [18]
    Friedman, J. 1989. Regularized discriminant analysis. J. Amer. Stat. Assoc. 84, 405, 165--175.
    [19]
    Gersho, A. and Gray, R. 1992. Vector Quantization and Signal Compression. Springer, Berlin.
    [20]
    Gilmore, M., Castaño, R., Mann, T., Anderson, R., Mjolsness, E., Manduchi, R., and Saunders, R. 2000. Strategies for autonomous rovers at Mars. J. Geophysical Res.-Planets.
    [21]
    Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. 2005. Neighbourhood components analysis. In Advances in Neural Information Processing Systems 17, L. K. Saul, Y. Weiss, and L. Bottou Eds., MIT Press, Cambridge, MA, 513--520.
    [22]
    Grigorescu, S., Petkov, N., and Kruizinga, P. 2002. Comparison of texture features based on gabor filters. IEEE Trans. Image Process. 11, 10, 1160--1167.
    [23]
    Guo, Y., Hastie, T., and Tibshirani, R. 2007. Regularized linear discriminant analysis and its application in microarrays. Biostatistics 8, 1, 86.
    [24]
    Hamsici, O. and Martinez, A. 2007. Bayes optimality in linear discriminant analysis. IEEE Trans. Pattern Anal. Mach. Intell. 647--657.
    [25]
    Hayden, D. S., Chien, S., Thompson, D. R., and Castano, R. 2010. Onboard clustering of aerial data for selective data return. In Proceedings of the 10th International Symposium on Artificial Intelligence, Robotics, and Automation in Space.
    [26]
    Howland, P., Jeon, M., and Park, H. 2004. Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 1, 165--179.
    [27]
    Huang, J., Kumar, S., Mitra, M., Zhu, W., and Zabih, R. 1997. Image indexing using color correlograms. In Proceedings of the Computer Vision and Pattern Recognition. IEEE Computer Society, 762.
    [28]
    Hubert, L. and Arabie, P. 1985. Comparing partitions. J. Classification 2, 193--218.
    [29]
    Jain, P., Kulis, B., Dhillon, I. S., and Grauman, K. 2009. Online metric learning and fast similarity search. In Advances in Neural Information Processing Systems 21, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou Eds., 761--768.
    [30]
    Julesz, B. 1981. Textons, the elements of texture perception, and their interactions. Nature 290, 5802, 91.
    [31]
    Kinsey, J., Eustice, R., and Whitcomb, L. 2006. A survey of underwater vehicle navigation: Recent advances and new challenges. In Proceedings of the 7th Conference on Manuevering and Control of Marine Craft (MCMC’06).
    [32]
    Liu, S. and Jernigan, M. 1990. Texture analysis and discrimination in additive noise. Comput. Vision Graph. Image Process. 49, 1, 52--67.
    [33]
    Lloyd, S. 1982. Least square quantization in pcm. IEEE Trans. Inform. Theor. 28.
    [34]
    Lowe, D. 1999. Object recognition from local scale-invariant features. In Proceedings of the International Conference on Computer Vision. IEEE Computer Society, 1150.
    [35]
    MacQueen, J. et al. 1967. Some methods for classification and analysis of multivariate observations. In Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Vol. 1, 14.
    [36]
    Manjunath, B. and Ma, W. 2002. Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18, 8, 837--842.
    [37]
    NASA. 2006. 2006 solar system exploration roadmap. Tech. rep., NASA, Washington, D.C.
    [38]
    Qin, A., Suganthan, P., and Loog, M. 2005. Uncorrelated heteroscedastic LDA based on the weighted pairwise Chernoff criterion. Pattern Recog. 38, 4, 613--616.
    [39]
    Rubner, Y., Tomasi, C., and Guibas, L. 2000. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision 40, 2, 99--121.
    [40]
    Saegusa, T. and Maruyama, T. 2007. An FPGA implementation of k-means clustering for color images based on Kd-tree. In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL’06). IEEE, 1--6.
    [41]
    Stoffel, K. and Belkoniene, A. 1999. Parallel k/h-means clustering for large data sets. In Proceedings of the Euro-Par’99 Conference on Parallel Processing. 1451--1454.
    [42]
    Thompson, D., Smith, T., and Wettergreen, D. 2008. Information-optimal selective data return for autonomous rover traverse science and survey. In Proceedings of the International Conference on Robotics and Automation (ICRA’08). IEEE, 968--973.
    [43]
    Thrun, S., Thayer, S., Whittaker, W., Baker, C., Burgard, W., Ferguson, D., Hahnel, D., Montemerlo, D., Morris, A., Omohundro, Z., et al. 2005.Autonomous exploration and mapping of abandoned mines. IEEE Robot. Automation Mag. 11, 4, 79--91.
    [44]
    Tuytelaars, T. and Mikolajczyk, K. 2008. Local invariant feature detectors: A survey. Found. Trends® in Comput. Graph. Vision 3, 3, 177--280.
    [45]
    Vinh, N. X., Epps, J., and Bailey, J. 2009. Information theoretic measures for clusterings comparison: Is a correction for chance necessary? In Proceedings of the 26th International Conference on Machine Learning. L. Bottou and M. Littman Eds., 1073--1080.
    [46]
    Weinberger, K., Blitzer, J., and Saul, L. 2006. Distance metric learning for large margin nearest neighbor classification. In Advances in Neural Information Processing Systems 18, Y. Weiss, B. Schölkopf, and J. Platt Eds., MIT Press, Cambridge, MA, 1473--1480.
    [47]
    Wettergreen, D., Wagner, M. D., Jonak, D., Baskaran, V., Deans, M., Heys, S., Pane, D., Smith, T., Teza, J., Thompson, D. R., Tompkins, P., and Williams, C. 2008. Long-distance autonomous survey and mapping in the robotic investigation of life in the atacama desert. In Proceedings of the International Symposium on Artificial Intelligence, Robotics and Automation in Space (iSAIRAS).
    [48]
    Xing, E., Ng, A., Jordan, M., and Russell, S. 2002. Distance metric learning, with application to clustering with side-information. In Advances in Neural Information Processing Systems 16, S. Becker, S. Thrun, and K. Obermayer Eds., MIT Press, Cambridge, MA, 521--528.
    [49]
    Xu, R. and Wunsch, D. 2005. Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 3, 645--678.
    [50]
    Yang, L. 2007. An overview of distance metric learning. In Proceedings of the Computer Vision and Pattern Recognition Conference.
    [51]
    Yang, L. and Jin, R. 2007. Bayesian active distance metric learning. In Proceedings of the Uncertainty in Artificial Intelligence.
    [52]
    Ye, J. 2006. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. J. Mach. Learn. Res. 6, 1, 483.

    Cited By

    View all
    • (2024)PRISM: Deep metric learning based personal grouping method to reduce intersubject variability for motor imagery brain-computer interfaceNeurocomputing10.1016/j.neucom.2024.127805(127805)Online publication date: May-2024
    • (2023)Enabling technologies for planetary explorationPlanetary Exploration Horizon 206110.1016/B978-0-323-90226-7.00002-7(249-329)Online publication date: 2023
    • (2017)Robotic space exploration agentsScience Robotics10.1126/scirobotics.aan48312:7Online publication date: 28-Jun-2017
    • Show More Cited By

    Index Terms

    1. Using Clustering and Metric Learning to Improve Science Return of Remote Sensed Imagery

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Intelligent Systems and Technology
      ACM Transactions on Intelligent Systems and Technology  Volume 3, Issue 3
      May 2012
      384 pages
      ISSN:2157-6904
      EISSN:2157-6912
      DOI:10.1145/2168752
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 May 2012
      Accepted: 01 September 2011
      Revised: 01 July 2011
      Received: 01 January 2011
      Published in TIST Volume 3, Issue 3

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Onboard data analysis
      2. clustering
      3. information retrieval
      4. selective data return
      5. space exploration

      Qualifiers

      • Research-article
      • Research
      • Refereed

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)10
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 27 Jul 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)PRISM: Deep metric learning based personal grouping method to reduce intersubject variability for motor imagery brain-computer interfaceNeurocomputing10.1016/j.neucom.2024.127805(127805)Online publication date: May-2024
      • (2023)Enabling technologies for planetary explorationPlanetary Exploration Horizon 206110.1016/B978-0-323-90226-7.00002-7(249-329)Online publication date: 2023
      • (2017)Robotic space exploration agentsScience Robotics10.1126/scirobotics.aan48312:7Online publication date: 28-Jun-2017
      • (2017)Discriminant deep belief network for high-resolution SAR image classificationPattern Recognition10.1016/j.patcog.2016.05.02861:C(686-701)Online publication date: 1-Jan-2017

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media