Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

An Implantable Release-on-Demand CMOS Drug Delivery SoC Using Electrothermal Activation Technique

Published: 01 June 2012 Publication History

Abstract

An implantable system-on-a-chip (SoC) integrating controller/actuation circuitry and 8 individually addressable drug reservoirs is proposed for on-demand drug delivery. It is implemented by standard 0.35-μm CMOS technology and post-IC processing. The post-IC processing includes deposition of metallic membranes (200Å Pt/3000Å Ti/200Å Pt) to cap the drug reservoirs, deep dry etching to carve drug reservoirs in silicon as drug containers, and PDMS layer bonding to enlarge the drug storage. Based on electrothermal activation technique, drug releases can be precisely controlled by wireless signals. The wireless controller/actuation circuits including on-off keying (OOK) receiver, microcontroller unit, clock generator, power-on-reset circuit, and switch array are integrated on the same chip, providing patients the ability of remote drug activation and noninvasive therapy modification. Implanted by minimally invasive surgery, this SoC can be used for the precise drug dosing of localized treatment, such as the cancer therapy, or the immediate medication to some emergent diseases, such as heart attack. In vitro experimental results show that the reservoir content can be released successfully through the rupture of the membrane which is appointed by received wireless commands.

References

[1]
Behzad, A., Carter, K. A., Chien, H.-M., Wu, S., Pan, M.-A., Lee, C.-P., Li, Q., Leete, J. C., Au, S., Kappes, M. S., Zhou, Z., Ojo, D., Zhang, L., Zolfaghari, A., Castanada, J., Darabi, H., Yeung, B., Rofougaran, A., Rofougaran, M., Trachewsky, J., Moorti, T., Gaikwad, R., Bagchi, A., Hammerschmidt, J. S., Pattin, J., Rael, J. J., and Marholev, B. 2007. A fully integrated MIMO multiband direct conversion CMOS transceiver for WLAN applications (802.11n). IEEE J. Solid-State Circ. 42, 12, 2795--2808.
[2]
Belanger, M. C. and Marois, Y. 2001. Hemocompatibility, biocompatibility, inflammatory and in vivo studies of primary reference materials low-density polyethylene and polydimethylsiloxane: A review. J. Biomed. Mat. Res. Part B: Appl. Biomate. 58, 467--477.
[3]
Chan, C. K., Peng, H., Liu, G., Mcilwrath, K., Zhang, X. F., Huggins, R. A., and Cui, Y. 2008. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31--35.
[4]
Chen, C. H., Hwang, R. Z., Huang, L. S., Lin, S., Chen, H. C., Yang, Y. C., Lin, Y. T., Yu, S. A., Wang, Y. H., Chou, N. K., and Lu, S. S. 2006. A wireless Bio-MEMS sensor for C-Reactive Protein detection based on nanomechanics. In Proceedings of the IEEE International Solid-State Circuit Conference (ISSCC’06).
[5]
Chen, J. Y., Flynn, M. P., and Hayes, J. P. 2007. A fully integrated auto-calibrated super-regenerative receiver in 0.13 μm CMOS. IEEE J. Solid-State Circ. 42, 1976--1985.
[6]
Cong, P., Chaimanonart, N., Ko, W. H., and Yang, D. J. 2009. A wireless and batteryless 130mg 300 μW 10b implantable blood-pressure-sensing microsystem for real-time genetically engineered mice monitoring. In Proceedings of the IEEE International Solid-State Circuit Conference (ISSCC’09).
[7]
Duffy, D. C., McDonald, J. C., Schueller, O. J. A., and Whitesides, G. M. 1998. Soft lithography. Ann. Rev. Mate. Sci. 28, 153--184.
[8]
Folkman, J. and Long, D. M. 1964. The use of silicone rubber as a carrier for prolonged drug therapy. J. Surg. Res. 4, 139--142.
[9]
Gosalia, K., Weiland, J., Humayun, M., and Lazzi, G. 2004. Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans. Biomed. Eng. 51, 1469--1477.
[10]
Hillner, B. E., Smith, T., Coyne, P. J., and Cassel, J. B. 2003. Preliminary estimates of the cost effectiveness (CE) ratio of implantable drug delivery systems (IDDS) compared to comprehensive medical management (CMM) in patients with refractory cancer pain. Proc. Am. Soc. Clin. Oncol.
[11]
Langer, R. and Folkman, J. 1976. Polymers for the sustained release of proteins and other macromolecules. Nature 263, 797--800.
[12]
La Van, D. A., McGuire, T., and Langer, R. 2003. Small-scale systems for in vivo drug delivery. Nature Biotechnol., 21, 1184--1191.
[13]
Li, S. and Chen, S. 2003. Polydimethylsioxane fluidic interconnects for microfluidic systems. IEEE Trans. Adv. Packag. 26, 242--247.
[14]
Li, Y., Shawgo, R. S., Tyler, B., Henderson, P. T., Vogel, J. S., Rosenberg, A., Storm, P. B., Langer, R., Brem, H., and Cima, M. J. 2004. In vivo release from a drug delivery MEMS device. J. Control. Release 100, 2, 211--219.
[15]
Lin, Y. T., Wang, T. Lu, S. S., and Huang, G. W. 2005. A 0.5 V 3.1 mW fully monolithic OOK receiver for wireless local area sensor network. In Proceedings of the IEEE International Asian Solid-State Circuit Conference.
[16]
Loblaw, D. A., Mendelson, D. S., Talcott, J. A., Virgo, K. S., Somerfield, M. R., Ben-Josef, E., Middleton, R., Porterfield, H., Sharp, S. A., Smith, T. J., Taplin, M. E., Vogelzang, N. J., Wade, J. L., Bennett, C. L., And Scher, H. I. 2004. American Society of Clinical Oncology recommendations for the initial hormonal management of androgen-sensitive metastatic, recurrent, or progressive prostate cancer. J. Clin. Oncol. 22, 2927--2941.
[17]
Maloney, J. M., Uhland, S. A., Polito, B. F., Sheppard, N. F., Peltsa, C. M., and Santini Jr., J. T. 2005. Electrothermally activated microchips for implantable drug delivery and biosensing. J. Control. Rel. 109, 244--255.
[18]
Pillai, O. and Panchagnula, R. 2001. Polymers in drug delivery. Curr. Opin. Chem. Biol. 447--451.
[19]
Prescott, J. H., Lipka, S., Baldwin, S., Sheppard, N. F., Maloney, J. M., Coppeta, J., Yomtov, B., Staples, M. A., and Santini, J. T. 2006. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotech. 24, 4.
[20]
Randall, C. L., Leong, T. G., Bassik, N., and Gracias, D. H. 2007. 3D lithographyically fabricated nanoliter containers for drug delivery. Adv. Drug Del. Rev. 59, 1547--1561.
[21]
Rothermel, A., Liu, L., Aryan, N. P., Fischer, M., Wuenschmann, J., Kibbel, S., and Harscher, A. 2009. A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE J. Solid-State Circ. 44, 1, 290--300.
[22]
Salthouse, T. N. 1984. Some aspects of macrophage behavior at the implant interface. J. Biomed. Mat. Res. 18, 395--401.
[23]
Santini Jr., J. T., Cima, M. J., and Langer, R. 1999. A controlled-release microchip. Nature.
[24]
Shastri, V. P. 2003. Non-degradable biocompatible polymers in medicine: Past, present and future. Curr. Pharm. Biotechnol. 4, 331--337.
[25]
Smith, M. S. 1997. Application-Specific Integrated Circuits. Addison-Wesley, 56--57.
[26]
Smith, S., Tang, T. B., Terry, J. G., Stevenson, J. T. M., Flynn, B. W., Reekie, H. M., Murray, A. F., Gundlach, A. M., Renshaw, D., Dhillon, B., Ohtori, A., Inoue, Y., and Walton, A. J. 2007. Development of a miniaturised drug delivery system with wireless power transfer and communication. IET Nanobiotechnol., 80--86.
[27]
Smith, T. J., Staats, P. S., Deer, T., Stearns, L. J., Rauck, R. L., Boortz-Marx, R. L., Buchser, E., Catala, E., Bryce, D. A., Coyne, P. J., and Pool, G. R. 2002. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: Impact on pain, drug-related toxicity, and survival. J. Clin. Oncol. 20, 4040--4049.
[28]
Urquhart, J. 2000. Internal medicine in the 21st century: Controlled drug delivery: Therapeutic and pharmacological aspects. J. Intern. Med. 248, 357--376.
[29]
Wang, T., Chen, H. C., Chiu, H. W., Lin, Y. S., Huang, G. W., and Lu, S. S. 2006. Micromachined CMOS LNA and VCO by CMOS compatible ICP deep trench technology. IEEE Trans. Microwave Theory Tech. 54, 2.
[30]
Zeng, F. G., Rebscher, S., Harrison, W., Sun, X., and Feng, H. 2008. Cochlear implants: System design, integration, and evaluation. IEEE Rev. Biomed. Eng. 1, 115--142.

Cited By

View all
  • (2023)Nanocarrier‐Based Drug Delivery Systems using Microfluidic‐Assisted TechniquesAdvanced NanoBiomed Research10.1002/anbr.2023000413:11Online publication date: 31-Aug-2023
  • (2020)Design of a Mixed Signal Bladder Control System with Sensor Front-End Readout and Drug Delivery Actuator based on TSMC 0.18um Technology2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)10.1109/R10-HTC49770.2020.9356960(1-5)Online publication date: 1-Dec-2020
  • (2020)Deep brain drug-delivery control using vagus nerve communicationsComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2020.107137171:COnline publication date: 1-Jul-2020
  • Show More Cited By

Index Terms

  1. An Implantable Release-on-Demand CMOS Drug Delivery SoC Using Electrothermal Activation Technique

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal on Emerging Technologies in Computing Systems
    ACM Journal on Emerging Technologies in Computing Systems  Volume 8, Issue 2
    Special Issue on Implantable Electronics
    June 2012
    94 pages
    ISSN:1550-4832
    EISSN:1550-4840
    DOI:10.1145/2180878
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Journal Family

    Publication History

    Published: 01 June 2012
    Accepted: 01 July 2011
    Revised: 01 July 2011
    Received: 01 March 2011
    Published in JETC Volume 8, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Biocompatibility
    2. CMOS SoC
    3. drug delivery
    4. electrothermal
    5. implantable
    6. post-IC

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)16
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Nanocarrier‐Based Drug Delivery Systems using Microfluidic‐Assisted TechniquesAdvanced NanoBiomed Research10.1002/anbr.2023000413:11Online publication date: 31-Aug-2023
    • (2020)Design of a Mixed Signal Bladder Control System with Sensor Front-End Readout and Drug Delivery Actuator based on TSMC 0.18um Technology2020 IEEE 8th R10 Humanitarian Technology Conference (R10-HTC)10.1109/R10-HTC49770.2020.9356960(1-5)Online publication date: 1-Dec-2020
    • (2020)Deep brain drug-delivery control using vagus nerve communicationsComputer Networks: The International Journal of Computer and Telecommunications Networking10.1016/j.comnet.2020.107137171:COnline publication date: 1-Jul-2020
    • (2019)Capacity Analysis of a Peripheral Nerve Using Modulated Compound Action Potential PulsesIEEE Transactions on Communications10.1109/TCOMM.2018.287112167:1(154-164)Online publication date: Jan-2019
    • (2019)Radio frequency controlled wireless drug delivery devicesApplied Physics Reviews10.1063/1.50991286:4Online publication date: 3-Oct-2019
    • (2017)A Novel High-Speed, Low-Power CNTFET-Based Inexact Full Adder Cell for Image Processing Application of Motion DetectorJournal of Circuits, Systems and Computers10.1142/S021812661750082726:05(1750082)Online publication date: May-2017
    • (2017)On-Demand Controlled Drug DeliveryAdvances in Personalized Nanotherapeutics10.1007/978-3-319-63633-7_9(131-156)Online publication date: 10-Dec-2017
    • (2016)Internet of Medical Things: The Next PC (Personal Care) EraSmart Sensors and Systems10.1007/978-3-319-33201-7_11(265-333)Online publication date: 17-Oct-2016

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media