Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2213836.2213859acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Efficient spatial sampling of large geographical tables

Published: 20 May 2012 Publication History

Abstract

Large-scale map visualization systems play an increasingly important role in presenting geographic datasets to end users. Since these datasets can be extremely large, a map rendering system often needs to select a small fraction of the data to visualize them in a limited space. This paper addresses the fundamental challenge of thinning: determining appropriate samples of data to be shown on specific geographical regions and zoom levels. Other than the sheer scale of the data, the thinning problem is challenging because of a number of other reasons: (1) data can consist of complex geographical shapes, (2) rendering of data needs to satisfy certain constraints, such as data being preserved across zoom levels and adjacent regions, and (3) after satisfying the constraints, an optimal solution needs to be chosen based on objectives such as maximality, fairness, and importance of data.
This paper formally defines and presents a complete solution to the thinning problem. First, we express the problem as a integer programming formulation that efficiently solves thinning for desired objectives. Second, we present more efficient solutions for maximality, based on DFS traversal of a spatial tree. Third, we consider the common special case of point datasets, and present an even more efficient randomized algorithm. Finally, we have implemented all techniques from this paper in Google Maps visualizations of Fusion Tables, and we describe a set of experiments that demonstrate the tradeoffs among the algorithms.

References

[1]
Apache simplex solver. http://commons.apache.org/math/.
[2]
Arcgis. http://www.esri.com/software/arcgis/index.html.
[3]
Cartodb. http://cartodb.com.
[4]
Cplex. http://www-01.ibm.com/software/integration/ optimization/cplex-optimizer/.
[5]
Geocommons. http://geocommons.com/.
[6]
Google maps. http://maps.google.com.
[7]
Mapquest. http://mapquest.com.
[8]
Oracle spatial. http://www.oracle.com/us/products/database/options/spatial/index.html.
[9]
S. Agmon. The relaxation method for linear inequalities. Canadian Journal of Mathematics, 5(3):388--414, 1954.
[10]
W. G. Cochran. Sampling Techniques, 3rd Edition. John Wiley, 1977.
[11]
S. Cohen, C. Li, J. Yang, and C. Yu. Computational journalism: A call to arms to database researchers. In CIDR, pages 148 -- 151, 2011.
[12]
A. U. Frank and S. Timpf. Multiple representations for cartographic objects in a multi-scale tree - an intelligent graphical zoom. Computers and Graphics, 18(6):823 -- 829, 1994.
[13]
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., 1979.
[14]
H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, W. Shen, and J. Goldberg-Kidon. Google fusion tables: web-centered data management and collaboration. In SIGMOD Conference, 2010. http://www.google.com/fusiontables.
[15]
S. Grumbach, P. Rigaux, and L. Segoufin. The dedale system for complex spatial queries. In SIGMOD Conference, 1998.
[16]
A. Guttman. R-trees: A dynamic index structure for spatial searching. In SIGMOD Conference, pages 47--57, 1984.
[17]
J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.
[18]
J. Han, M. Kamber, and A. K. H. Tung. Spatial clustering methods in data mining: A survey. Geographic Data Mining and Knowledge Discovery, pages 1 -- 29, 2001.
[19]
D. Hilbert. Uber die stetige abbildung einer linie auf ein flachenstuck. Math. Ann., 38:459--460, 1891.
[20]
G. R. Hjaltason and H. Samet. Incremental distance join algorithms for spatial databases. In SIGMOD Conference, pages 237--248, 1998.
[21]
I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query processing techniques in relational database systems. ACM Comput. Surv., 40(4):11--58, 2008.
[22]
D. M. Olson, E. Dinerstein, E. Wikramanayake, N. Burgess, G. Powell, E. Underwood, J. D'amico, I. Itoua, H. Strand, J. Morrison, C. Loucks, T. Allnutt, T. Ricketts, Y. Kura, J. Lamoreux, W.W.Wettengel, P. Hedao, and K. Kassem. Terrestrial ecoregions of the world: A new map of life on earth. BioScience, 51:933--938, 2001.
[23]
J. Patel, J. Yu, N. Kabra, K. Tufte, B. Nag, J. Burger, N. Hall, K. Ramasamy, R. Lueder, C. Ellmann, J. Kupsch, S. Guo, J. Larson, D. Dewitt, and J. Naughton. Building a scalable geo-spatial dbms: Technology, implementation, and evaluation. In SIGMOD Conference, pages 336--347, 1997.
[24]
R. Phillips and L. Noyes. An investigation of visual clutter in the topographic base of a geological map. Cartographic Journal, 19(2):122 -- 131, 1982.
[25]
E. Puppo and G. Dettori. Towards a formal model for multiresolution spatial maps. In International Simposium on Large Spatial Database, pages 152--169, 1995.
[26]
H. Sagan. Space-Filling Curves. Springer-Verlag, 1994.
[27]
H. Samet. The design and analysis of spatial data structures. Addison-Wesley Longman Publishing Co., Inc., 1990.
[28]
K. Shea and R. Mcmaster. Cartographic generalization in a digital environment: When and how to generalize. AutoCarto, 9:56--67, 1989.
[29]
M. J. Ware, C. B. Jones, and N. Thomas. Automated map generalization with multiple operators: a simulated annealing approach. International Journal of Geographical Information Science, 17(8):743 -- 769, 2003.
[30]
A. Woodruff, J. Landay, and M. Stonebraker. Constant information density in zoomable interfaces. In AVI, pages 57--65, 1998.

Cited By

View all
  • (2023)Skyline-Based Sorting Approach for Rail Transit Stations VisualizationISPRS International Journal of Geo-Information10.3390/ijgi1203011012:3(110)Online publication date: 6-Mar-2023
  • (2023)BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets using Neural-Enhanced Mixed Sum-Product NetworksProceedings of the ACM Web Conference 202310.1145/3543507.3583411(1734-1742)Online publication date: 30-Apr-2023
  • (2021)Fast augmentation algorithms for network kernel density visualizationProceedings of the VLDB Endowment10.14778/3461535.346154014:9(1503-1516)Online publication date: 1-May-2021
  • Show More Cited By

Index Terms

  1. Efficient spatial sampling of large geographical tables

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '12: Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data
    May 2012
    886 pages
    ISBN:9781450312479
    DOI:10.1145/2213836
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 20 May 2012

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. data visualization
    2. geographical databases
    3. indexing
    4. maps
    5. query processing
    6. spatial sampling

    Qualifiers

    • Research-article

    Conference

    SIGMOD/PODS '12
    Sponsor:

    Acceptance Rates

    SIGMOD '12 Paper Acceptance Rate 48 of 289 submissions, 17%;
    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)10
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Skyline-Based Sorting Approach for Rail Transit Stations VisualizationISPRS International Journal of Geo-Information10.3390/ijgi1203011012:3(110)Online publication date: 6-Mar-2023
    • (2023)BlinkViz: Fast and Scalable Approximate Visualization on Very Large Datasets using Neural-Enhanced Mixed Sum-Product NetworksProceedings of the ACM Web Conference 202310.1145/3543507.3583411(1734-1742)Online publication date: 30-Apr-2023
    • (2021)Fast augmentation algorithms for network kernel density visualizationProceedings of the VLDB Endowment10.14778/3461535.346154014:9(1503-1516)Online publication date: 1-May-2021
    • (2021)Kyrix-S: Authoring Scalable Scatterplot Visualizations of Big DataIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.303037227:2(401-411)Online publication date: Feb-2021
    • (2021)A Structured Review of Data Management Technology for Interactive Visualization and AnalysisIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.302889127:2(1128-1138)Online publication date: Feb-2021
    • (2020)Linked Data Visualization: Techniques, Tools, and Big DataSynthesis Lectures on the Semantic Web: Theory and Technology10.2200/S00967ED1V01Y201911WBE01910:1(1-157)Online publication date: 18-Mar-2020
    • (2020)QUAD: Quadratic-Bound-based Kernel Density VisualizationProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3380561(35-50)Online publication date: 11-Jun-2020
    • (2020)STULL: Unbiased Online Sampling for Visual Exploration of Large Spatiotemporal Data2020 IEEE Conference on Visual Analytics Science and Technology (VAST)10.1109/VAST50239.2020.00012(72-83)Online publication date: Oct-2020
    • (2020)Machine Learning Meets Big Spatial Data2020 IEEE 36th International Conference on Data Engineering (ICDE)10.1109/ICDE48307.2020.00169(1782-1785)Online publication date: Apr-2020
    • (2019)SmileProceedings of the VLDB Endowment10.14778/3352063.335213812:12(2230-2241)Online publication date: 1-Aug-2019
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media