Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2247596.2247667acmotherconferencesArticle/Chapter ViewAbstractPublication PagesedbtConference Proceedingsconference-collections
tutorial

Adaptive indexing in modern database kernels

Published: 27 March 2012 Publication History

Abstract

Physical design represents one of the hardest problems for database management systems. Without proper tuning, systems cannot achieve good performance. Offline indexing creates indexes a priori assuming good workload knowledge and idle time. More recently, online indexing monitors the workload trends and creates or drops indexes online. Adaptive indexing takes another step towards completely automating the tuning process of a database system, by enabling incremental and partial online indexing. The main idea is that physical design changes continuously, adaptively, partially, incrementally and on demand while processing queries as part of the execution operators. As such it brings a plethora of opportunities for rethinking and improving every single corner of database system design.
We will analyze the indexing space between offline, online and adaptive indexing through several state of the art indexing techniques, e. g., what-if analysis and soft indexes. We will discuss in detail adaptive indexing techniques such as database cracking, adaptive merging, sideways cracking and various hybrids that try to balance the online tuning overhead with the convergence speed to optimal performance. In addition, we will discuss how various aspects of modern techniques for database architectures, such as vectorization, bulk processing, column-store execution and storage affect adaptive indexing. Finally, we will discuss several open research topics towards fully automomous database kernels.

References

[1]
S. Agrawal et al. Database Tuning Advisor for Microsoft SQL Server. VLDB 2004.
[2]
N. Bruno and S. Chaudhuri. To Tune or not to Tune? A Lightweight Physical Design Alerter. VLDB 2006.
[3]
N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In ICDE, 2007.
[4]
N. Bruno and S. Chaudhuri. Physical design refinement: the 'merge-reduce' approach. ACM TODS, 32(4):28:1--28:41, 2007.
[5]
S. Chaudhuri and V. Narasayya. An efficient cost-driven index selection tool for Microsoft SQL Server. VLDB. 1997.
[6]
S. Chaudhuri and V. R. Narasayya. Self-tuning database systems: A decade of progress. VLDB, pages 3--14, 2007.
[7]
S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical database design for relational databases. ACM TODS, 13(1):91--128, 1988.
[8]
G. Graefe, S. Idreos, H. Kuno, and S. Manegold. Benchmarking adaptive indexing. TPCTC, pages 169--184, 2010.
[9]
G. Graefe and H. Kuno. Adaptive indexing for relational keys. SMDB, pages 69--74, 2010.
[10]
G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized indexes. EDBT, pages 371--381, 2010.
[11]
T. Härder. Selecting an optimal set of secondary indices. Lecture Notes in Computer Science, 44:146--160, 1976.
[12]
S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. CIDR, pages 68--78, 2007.
[13]
S. Idreos, M. L. Kersten, and S. Manegold. Updating a cracked database. SIGMOD, pages 413--424, 2007.
[14]
S. Idreos, M. L. Kersten, and S. Manegold. Self-organizing tuple reconstruction in column stores. SIGMOD, pages 297--308, 2009.
[15]
S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging what's cracked, cracking what's merged: Adaptive indexing in main-memory column-stores. PVLDB, 2011.
[16]
M. Lühring, K.-U. Sattler, K. Schmidt, and E. Schallehn. Autonomous management of soft indexes. SMDB, pages 450--458, 2007.
[17]
A. N. S. Praveen Seshadri. Generalized partial indexes. ICDE, pages 420--427, 1995.
[18]
K. Schnaitter et al. COLT: Continuous On-Line Database Tuning. SIGMOD 2006.
[19]
M. Stonebraker. The case for partial indexes. SIGMOD Record, 18(4):4--11, 1989.
[20]
G. Valentin et al. DB2 Advisor: An Optimizer Smart Enough to Recommend Its Own Indexes. ICDE. 2000.
[21]
D. C. Zilio et al. DB2 Design Advisor: Integrated Automatic Physical Database Design. VLDB 2004.

Cited By

View all
  • (2024)Top data analysis performance – case study2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)10.1109/SAMI60510.2024.10432792(000271-000276)Online publication date: 25-Jan-2024
  • (2024)Information System for Police Force: Application for Analyzing Traffic Accidents Data2024 International Conference on Emerging eLearning Technologies and Applications (ICETA)10.1109/ICETA63795.2024.10850737(389-394)Online publication date: 24-Oct-2024
  • (2024)Optimizing the B+tree Index with Hotness Awareness and AdaptivityAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5581-3_29(356-367)Online publication date: 1-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
EDBT '12: Proceedings of the 15th International Conference on Extending Database Technology
March 2012
643 pages
ISBN:9781450307901
DOI:10.1145/2247596

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 March 2012

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Tutorial

Conference

EDBT '12

Acceptance Rates

Overall Acceptance Rate 7 of 10 submissions, 70%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)28
  • Downloads (Last 6 weeks)2
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Top data analysis performance – case study2024 IEEE 22nd World Symposium on Applied Machine Intelligence and Informatics (SAMI)10.1109/SAMI60510.2024.10432792(000271-000276)Online publication date: 25-Jan-2024
  • (2024)Information System for Police Force: Application for Analyzing Traffic Accidents Data2024 International Conference on Emerging eLearning Technologies and Applications (ICETA)10.1109/ICETA63795.2024.10850737(389-394)Online publication date: 24-Oct-2024
  • (2024)Optimizing the B+tree Index with Hotness Awareness and AdaptivityAdvanced Intelligent Computing Technology and Applications10.1007/978-981-97-5581-3_29(356-367)Online publication date: 1-Aug-2024
  • (2023)Referencing validity assignment using B+tree index enhancements2023 World Symposium on Digital Intelligence for Systems and Machines (DISA)10.1109/DISA59116.2023.10308931(145-153)Online publication date: 21-Sep-2023
  • (2019)Fluid data structuresProceedings of the 17th ACM SIGPLAN International Symposium on Database Programming Languages10.1145/3315507.3330197(3-17)Online publication date: 23-Jun-2019
  • (2019)AI Meets AIProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3324957(1241-1258)Online publication date: 25-Jun-2019
  • (2019)Wander Join and XDBACM Transactions on Database Systems10.1145/328455144:1(1-41)Online publication date: 29-Jan-2019
  • (2017)Graph ExplorationProceedings of the 2017 ACM International Conference on Management of Data10.1145/3035918.3054778(1737-1740)Online publication date: 9-May-2017
  • (2017)Incremental branching adaptive radix tree2017 12th International Conference on Computer Engineering and Systems (ICCES)10.1109/ICCES.2017.8275358(493-499)Online publication date: Dec-2017
  • (2017)Adaptive indexing approach for main memory column storeThe Journal of Engineering10.1049/joe.2016.00682017:2(26-32)Online publication date: 23-Feb-2017
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media