Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2254736.2254741acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

iSearch: an interpretation based framework for keyword search in relational databases

Published: 20 May 2012 Publication History

Abstract

Keyword search has become an effective information retrieval method for structured data. Existing works in relational database keyword search have addressed the problems of finding and evaluating candidate results. However, given that keyword queries are inherently ambiguous, it is often the case that candidate results do not match users' search intention. In this paper, we analyze the limitations of current keyword search techniques and introduce the problem of generating and ranking keyword query interpretations. We propose a novel 3-phase keyword search paradigm which consists of: (1) the ability to predict query interpretations; (2) incorporate user feedback to to remove keyword ambiguities; (3) a ranking model to evaluate a query interpretation.

References

[1]
Db2 text information extender. http://www.ibm.com/developerworks/data/tutorials/dm-0810shettar/index.html.
[2]
Microsoft sql server 2008 r2. http://msdn.microsoft.com/en-us/library/ms142571.aspx.
[3]
Mysql. http://dev.mysql.com/doc/refman/5.5/en/fulltext-search.html.
[4]
A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objectrank: authority-based keyword search in databases. VLDB '04, pages 564--575.
[5]
S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, and Y. Velegrakis. Keyword search over relational databases: a metadata approach. SIGMOD '11, pages 565--576.
[6]
B. Ding, J. X. Yu, S. Wang, L. Qin, X. Zhang, and X. Lin. Finding top-k min-cost connected trees in databases. ICDE'07, pages 836--845.
[7]
S. E. Dreyfus and R. A. Wagner. The steiner problem in graphs. Networks, pages 195--207, 1972.
[8]
H. He, H. Wang, J. Yang, and P. S. Yu. Blinks: ranked keyword searches on graphs. SIGMOD '07, pages 305--316.
[9]
V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword search over relational databases. VLDB '2003.
[10]
V. Hristidis and Y. Papakonstantinou. Discover: keyword search in relational databases. VLDB '02.
[11]
A. Hulgeri and C. Nakhe. Keyword searching and browsing in databases using banks. ICDE '02.
[12]
K. Järvelin and J. Kekäläinen. Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst., 2002.
[13]
V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and H. Karambelkar. Bidirectional expansion for keyword search on graph databases. VLDB '05, pages 505--516.
[14]
B. Kimelfeld and Y. Sagiv. Finding and approximating top-k answers in keyword proximity search. PODS '06, pages 173--182.
[15]
F. Liu, C. Yu, W. Meng, and A. Chowdhury. Effective keyword search in relational databases. SIGMOD '06.
[16]
Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in relational databases. SIGMOD '07.
[17]
A. Sanjay, C. Surajit, and D. Gautam. Dbxplorer: A system for keyword-based search over relational databases. ICDE '02.
[18]
A. Termehchy and M. Winslett. Using structural information in xml keyword search effectively. ACM Trans. Database Syst., 36(1):4:1--4:39, Mar. 2011.
[19]
P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. SIGMOD '07.
[20]
Y. Xiaohui and S. Huxia. Ranking keyword search results based on collective importance. VLDB '12.
[21]
X. Yang, C. M. Procopiuc, and D. Srivastava. Summarizing relational databases. Proc. VLDB Endow., 2(1):634--645, Aug. 2009.
[22]
J. X. Yu, L. Qin, and L. Chang. Keyword search in relational databases: A survey. IEEE Data Eng. Bull., pages 67--78, 2010.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
KEYS '12: Proceedings of the Third International Workshop on Keyword Search on Structured Data
May 2012
78 pages
ISBN:9781450311984
DOI:10.1145/2254736
  • General Chairs:
  • Ling Tok Wang,
  • Ge Yu,
  • Jiaheng Lu,
  • Wei Wang
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 20 May 2012

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Research-article

Funding Sources

Conference

SIGMOD/PODS '12
Sponsor:

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Operator implementation of Result Set Dependent KWS scoring functionsInformation Systems10.1016/j.is.2019.101465(101465)Online publication date: Nov-2019
  • (2018)COKES: Continuous Top-k Keyword Search in Relational DatabasesGeo-Spatial Knowledge and Intelligence10.1007/978-981-13-0896-3_21(205-217)Online publication date: 12-Jun-2018
  • (2017)Keyword Query Expansion Paradigm Based on Recommendation and Interpretation in Relational DatabasesScientific Programming10.1155/2017/76130262017Online publication date: 1-Jan-2017
  • (2017)Constructing target-aware results for keyword search on knowledge graphsData & Knowledge Engineering10.1016/j.datak.2017.02.001110(1-23)Online publication date: Jul-2017
  • (2017)Scalable top-k keyword search in relational databasesCluster Computing10.1007/s10586-017-1232-6Online publication date: 6-Oct-2017
  • (2015)Improving the Effectiveness of Keyword Search in Databases Using Query LogsWeb-Age Information Management10.1007/978-3-319-21042-1_16(193-206)Online publication date: 6-Jun-2015
  • (2012)Ranking Algorithms for Keyword Search over Relational DatabasesAdvanced Materials Research10.4028/www.scientific.net/AMR.605-607.2291605-607(2291-2296)Online publication date: Dec-2012
  • (2012)Answering Top-k Keyword Queries on Relational DatabasesInternational Journal of Information Retrieval Research10.4018/ijirr.20120701032:3(36-57)Online publication date: 1-Jul-2012

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media