Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2330784.2330869acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Analysis of a feature-deselective neuroevolution classifier (FD-NEAT) in a computer-aided lung nodule detection system for CT images

Published: 07 July 2012 Publication History

Abstract

Systems for Computer-Aided Detection (CAD), specifically for lung nodule detection received increasing attention in recent years. This is in tandem with the observation that patients who are diagnosed with early stage lung cancer and who undergo curative resection have a much better prognosis. In this paper, we analyze the performance of a novel feature-deselective neuroevolution method called FD-NEAT to retain relevant features derived from CT images and evolve neural networks that perform well for combined feature selection and classification. Network performance is analyzed based on radiologists' ratings of various lung nodule characteristics defined in the LIDC database. The analysis shows that the FD-NEAT classifier relates well with the radiologists' perception in almost all the defined nodule characteristics, and shows that FD-NEAT evolves networks that are less complex than the fixed-topology ANN in terms of number of connections.

References

[1]
Tan, M., Deklerck, R., Jansen, B., Bister, M., and Cornelis, J. 2011. A novel computer-aided lung nodule detection system for CT images. Med. Phys. 38, 10 (Oct. 2011), 5630--5645.
[2]
Messay, T., Hardie, R. C. and Rogers, S. K. 2010. A new computationally efficient CAD system for pulmonary nodule detection in CT imagery. Med. Image Anal. 14, 3 (Jun. 2010), 390--406.
[3]
Li, Q., Sone, S. and Doi, K. 2003. Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med. Phys. 30, 8 (Aug. 2003), 2040--2051.
[4]
American Cancer Society. 2009. Cancer Facts and Figures.
[5]
Fry, W. A., Menck, H. R. and Winchester, D. P. 1996. The National cancer data base report on lung cancer. Cancer. 77, 9 (May 1996), 1947--1955.
[6]
Flehinger, B. J., Kimmel, M. and Melamed, M. R. 1992. The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest. 101, 4 (Apr. 1992), 1013--1018.
[7]
Martini, N., Bains, M. S., Burt, M. E., Zakowski, M. F., McCormack, P., Rusch, V. W., and Ginsberg, R. J. 1995. Incidence of local recurrence and second primary tumors in resected stage I lung cancer. The Journal of Thoracic and Cardiovascular Surgery. 109, 1 (Jan. 1995), 120--129.
[8]
Henschke, C. I., McCauley, D. I., Yankelevitz, D. F., Naidich, D. P., McGuinness, G., Miettinen, O. S., Libby, D. M., Pasmantier, M. W., Koizumi, J., Altorki, N. K., and Smith, J. P. 1999. Early Lung Cancer Action Project: Overall design and findings from baseline screening. Lancet. 354, 9173 (Jul. 1999), 99--105.
[9]
Swensen, S. J., Jett, J. R., Hartman, T. E., Midthun, D. E., Sloan, J. A., Sykes, A.-M., Aughenbaugh, G. L., and Clemens, M. A. 2003. Lung cancer screening with CT: Mayo Clinic experience. Radiology. 226, 3 (Mar. 2003), 756--761.
[10]
Kaneko, M., Eguchi, K., Ohmatsu, H., Kakinuma, R., Naruke, T., Suemasu, K., and Moriyama, N. 1996. Peripheral lung cancer: screening and detection with low-dose spiral CT versus radiography. Radiology. 201, 3 (Dec. 1996), 798--802.
[11]
Xu, D. M., Gietema, H., Koning, H. d., Vernhout, R., Nackaerts, K., Prokop, M., Weenink, C., Lammers, J.-W., Groen, H., Oudkerk, M., and Klaveren, R. v. 2006. Nodule management protocol of the NELSON randomised lung cancer screening trial. Lung Cancer, 54, 2 (Nov. 2006), 177--184.
[12]
Barnes, E. 2010. NLST results show drop in lung cancer deaths with CT screening. AuntMinnie.com, (Nov. 2010). http://www.auntminnie.com/index.aspx?sec=sup&sub=cto&pag=dis&itemid=92678&wf=4035. Last accessed: February 2012.
[13]
National Lung Screening Trial Research Team. 2011. The National Lung Screening Trial: Overview and study design. Radiology. 258, 1 (Jan. 2011), 243--253.
[14]
Tan, M., Hartley, M., Bister, M., and Deklerck, R. 2009. Automated feature selection in neuroevolution. Evol. Intel. 4, 1 (Feb. 2009), 271--292.
[15]
Stanley, K. O. and Miikkulainen, R. 2002. Evolving neural networks through augmenting topologies. Evol. Comput. 10, 2, 99--127.
[16]
Armato, S. G. III, McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., Zhao, B., Aberle, D. R., Henschke, C. I., Hoffman, E. A., Kazerooni, E. A., MacMahon, H., van Beek, E. J. R., Yankelevitz, D., et al. 2011. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 38, 2 (Feb. 2011), 915--931.
[17]
Golosio, B., Masala, G.L., Piccioli, A., Oliva, P., Carpinelli, M., Cataldo, R., Cerello, P., De Carlo, F., Falaschi, F., Fantacci, M.E., Gargano, G., Kasae, P., and Torsello, M., 2009. A novel multithreshold method for nodule detection in lung CT. Med. Phys. 36, 8 (Aug. 2009), 3607--3618.
[18]
Opfer, R., Wiemker, R., 2007. Performance analysis for computer aided lung nodule detection on LIDC data. In Medical Imaging 2007: Image Perception, Observer Performance, and Technology Assessment: Proceedings of SPIE. 6515, 65151C
[19]
Boroczky, L., Zhao, L. and Lee, K. P. 2006. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD. IEEE Trans. Inf. Technol. Biomed. 10, 3 (Jul. 2006), 504--511.
[20]
Suarez-Cuenca, J. J., Tahoces, P. G., Souto, M., Lado, M. J., Remy-Jardin, M., Remy, J., and Vidal, J. J. 2009. Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images. Comput. Biol. Med. 39, 10 (Oct. 2009), 921--933.
[21]
Skalak, D. B. 1994. Prototype and feature selection by sampling and random mutation hill-climbing algorithms. In: Proceedings of the 11th International Conference on Machine Learning. Morgan Kaufmann, New Brunswick, 293--301.
[22]
Langley, P. and Sage, S. 1994. Oblivious decision trees and abstract cases. In: Working notes of the AAAI-94 Workshop on Case-Based Reasoning. AAAI Press, Seattle, 113--117.
[23]
Mayr, C. 2003. NEAT Matlab. Last accessed: February 2012. http://nn.cs.utexas.edu/?neatmatlab.
[24]
Chang, C.-C. and Lin, C.-J. 2011. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 3, Article 27 (Apr. 2011), 1--27. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
[25]
Hsu, C.-W., Chang, C.-C. and Lin, C.-J. 2009. A practical guide to support vector classification. Technical report, National Taiwan University, Taipei 106, Taiwan.
[26]
Marquardt, D. 1963. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. SIAM J. Appl. Math. 11, 2 (Jun. 1963), 431--441.
[27]
Hagan, M. T. and Menhaj, M. 1999. Training feed-forward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 5, 6 (Nov. 1994), 989--993.
[28]
Timin, M. E. 1995. The robot auto racing simulator. Last accessed: February 2012. http://rars.sourceforge.net.
[29]
Salden, A. H., Romeny, B. M. T., Viergever, M. A., Florack, L., and Koenderink, J. J. 1992. Differential geometric description of 3D scalar images. Technical Report. 3D Computer Vision, Utrecht University Hospital, The Netherlands.
[30]
Romeny, B. M. t. H. 2003. Front-End Vision & Multi-Scale Image Analysis. Springer Verlag, Berlin.
[31]
Kohonen, T. 1997. Self-Organizing Maps. 2nd ed. Springer, Heidelberg.
[32]
Kohonen, T. 1988. Self-Organization and Associative Memory. 3rd ed. Springer Verlag, Berlin, Heidelberg.
[33]
National Cancer Institute. 2012. Lung Image Database Consortium. Last accessed: February 2012. https://wiki.cancerimagingarchive.net/display/Public/Lung+Image+Database+Consortium.
[34]
Ohta, Y., Shimizu, Y., Kobayashi, T., Matsui, O., Minato, H., Matsumoto, I., Watanabe, G., 2006. Pathologic and biological assessment of lung tumors showing ground-glass opacity. Ann. Thorac. Surg. 81, 4 (Apr. 2006), 1194--1197.
[35]
Reeves, A. P., Chan, A. B., Yankelevitz, D. F., Henschke, C. I., Kressler, B., Kostis, W. J., 2006. On measuring the change in size of pulmonary nodules. IEEE Trans. Med. Imaging. 25, 4 (Apr. 2006), 435--450.
[36]
Aoyama, M., Li, Q., Katsuragawa, S., MacMahon, H., Doi, K., 2002. Automated computerized scheme for distinction between benign and malignant solitary pulmonary nodules on chest images. Med. Phys. 29, 5 (May 2002), 701--708.

Cited By

View all
  • (2018)Blood Vessel Segmentation in Retinal Fundus Images Using Hypercube NeuroEvolution of Augmenting Topologies (HyperNEAT)Quantifying and Processing Biomedical and Behavioral Signals10.1007/978-3-319-95095-2_17(173-183)Online publication date: 18-Aug-2018
  • (2017)An investigation of topological choices in FS-NEAT and FD-NEAT on XOR-based problems of increased complexityProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3067695.3082497(1431-1434)Online publication date: 15-Jul-2017
  • (2017)The importance of the activation function in NeuroEvolution with FS-NEAT and FD-NEAT2017 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI.2017.8285328(1-7)Online publication date: Nov-2017
  • Show More Cited By

Index Terms

  1. Analysis of a feature-deselective neuroevolution classifier (FD-NEAT) in a computer-aided lung nodule detection system for CT images

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      GECCO '12: Proceedings of the 14th annual conference companion on Genetic and evolutionary computation
      July 2012
      1586 pages
      ISBN:9781450311786
      DOI:10.1145/2330784
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 07 July 2012

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. feature selection
      2. genetic algorithms
      3. lung nodule detection
      4. medical image analysis
      5. neural networks

      Qualifiers

      • Research-article

      Conference

      GECCO '12
      Sponsor:
      GECCO '12: Genetic and Evolutionary Computation Conference
      July 7 - 11, 2012
      Pennsylvania, Philadelphia, USA

      Acceptance Rates

      Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 23 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2018)Blood Vessel Segmentation in Retinal Fundus Images Using Hypercube NeuroEvolution of Augmenting Topologies (HyperNEAT)Quantifying and Processing Biomedical and Behavioral Signals10.1007/978-3-319-95095-2_17(173-183)Online publication date: 18-Aug-2018
      • (2017)An investigation of topological choices in FS-NEAT and FD-NEAT on XOR-based problems of increased complexityProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3067695.3082497(1431-1434)Online publication date: 15-Jul-2017
      • (2017)The importance of the activation function in NeuroEvolution with FS-NEAT and FD-NEAT2017 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI.2017.8285328(1-7)Online publication date: Nov-2017
      • (2016)A comparison between FS-NEAT and FD-NEAT and an investigation of different initial topologies for a classification task with irrelevant features2016 IEEE Symposium Series on Computational Intelligence (SSCI)10.1109/SSCI.2016.7850127(1-8)Online publication date: Dec-2016
      • (2015)Predictive feature selection for genetic policy searchAutonomous Agents and Multi-Agent Systems10.1007/s10458-014-9268-y29:5(754-786)Online publication date: 1-Sep-2015

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media