Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2335755.2335832acmotherconferencesArticle/Chapter ViewAbstractPublication PagesxsedeConference Proceedingsconference-collections
research-article

Optimization of density functional tight-binding and classical reactive molecular dynamics for high-throughput simulations of carbon materials

Published: 16 July 2012 Publication History

Abstract

Carbon materials and nanostructures (fullerenes, nanotubes) are promising building blocks of nanotechnology. Potential applications include optical and electronic devices, sensors, and nano-scale machines. The multiscale character of processes related to fabrication and physics of such materials requires using a combination of different approaches such as (a) classical dynamics, (b) direct Born-Oppenheimer dynamics, (c) quantum dynamics for electrons and (d) quantum dynamics for selected nuclei. We describe our effort on optimization of classical reactive molecular dynamics and density-functional tight binding method, which is a core method in our direct and quantum dynamics studies. We find that optimization is critical for efficient use of high-end machines. Choosing the optimal configuration for the numerical library and compilers can result in four-fold speedup of direct dynamics as compared with default programming environment. The integration algorithm and parallelization approach must also be tailored for the computing environment. The efficacy of possible choices is discussed.

References

[1]
R. Andrews, D. Jacques, A. Rao, F. Derbyshire, D. Qian, X. Fan, E. Dickey, and J. Chen. Chem. Phys. Lett., 303:467--474, 1999.
[2]
F. Banhart. The formation of a connection between carbon nanotubes in an electron beam. Nano. Lett., 1:329--332, 2001.
[3]
E. E. B. Campbell and F. Rohmund. Fullere reactions. Rep. Prog. Phys., 63:1061--1109, 2000.
[4]
R. C. Ehemann, P. S. Krstic, J. Dadras, P. R. C. Kent, and J. Jakowski. Detection of hydrogen using graphene. Nanoscale Research Letters, 7:198, 2012.
[5]
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B, 58(11):7260--7268, Sep 1998.
[6]
S. Garashchuk and V. A. Rassolov. Energy conserving approximations to the quantum potential: Dynamics with linearized quantum force. J. Chem. Phys., 120:1181, 2004.
[7]
S. Garashchuk and M. V. Volkov. The energy-conserving dynamics of quantum-classical systems based on quantum trajectories. Molecular Physics. (in press).
[8]
T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. Colbert, and R. Smalley. Self assembly of tubular fullerenes. J. Phys. Chem., 99:10694--10697, 1995.
[9]
T. Guo, P. Nikolaev, A. Thess, D. Colbert, and R. Smalley. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett., 243:49--54, 1995.
[10]
B. Hadri, H. You, and S. Moore. Determining the optimal performance environment configuration for numerical libraries. VECPAR 2012, 2012.
[11]
P. Harris. Solid state growth mechanisms for carbon nanotubes. Carbon, 45:229--239, 2007.
[12]
J. Jakowski, S. Irle, and K. Morokuma. Collision-induced fusion of two c60 fullerenes: Quantum chemical molecular dynamics simulations. Phys. Rev. B, 82:125443, 2010.
[13]
J. Jakowski, S. Irle, and K. Morokuma. Time-dependent quantum dynamical simulations of c2 condensation under extreme conditions. Phys. Chem. Chem. Phys., 14:6273--6279, 2012.
[14]
J. Jakowski, S. Irle, B. G. Sumpter, and K. Morokuma. Modeling charge transfer in fullerene collisions via real-time electron dynamics. J. Phys. Chem. Lett., 3:1536--1542, 2012.
[15]
J. Jakowski and K. Morokuma. Liouville-von neumann molecular dynamics. J. Chem. Phys., 130:224106, 2009.
[16]
I. Jang and S. B. Sinnott. Molecular dynamics study of carbon nanotube welding under electron beam irradiation. Nano Lett., 4:109--114, 2004.
[17]
M. Jose-Yacaman, M. Miki-Yoshida, L. Rendon, and J. G. Santiesteban. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 62:657, 1993.
[18]
A. V. Krasheninnikov, K. Nordlund, and J. Keinonen. Ion-irradiation-induced welding of carbon nanotubes. Phys. Rev. B, 66:245403, 2002.
[19]
H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley. C60: Buckminsterfullerene. Nature, 318:162--163, 1985.
[20]
P. S. Krstic, J. P. Allain, A. Allouche, J. Jakowski, J. Dadras, C. N. Taylor, Z. Yang, K. Morokuma, and S. Maeda. Dynamics of deuterium retention and sputtering of li--c--o surfaces. Fusion Engineering and Design, 2011. http://dx.doi.org/10.1016/j.fusengdes.2011.07.009.
[21]
J. Mazzuca, S. Garashchuk, and J. Jakowski. Description of proton transfer in soybean lipoxygenase-1 employing approximate quantum trajectory dynamics. Chem. Phys. Lett. (submitted).
[22]
N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev. A, 137:1441, 1965.
[23]
B. Ni, R. Andrews, D. Jacques, D. Qian, M. B. J. Wijesundara, Y. Choi, L. Hanley, and S. B. Sinnott. A combined computational and experimental study of ion-beam modification of carbon nanotube bundles. J. Phys. Chem. B, 105:12719, 2001.
[24]
D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, and R. Kaschner. Construction of tight-binding-like potentials on the basis of density-functional theory: Application to carbon. Phys. Rev. B, 51(19):12947--12957, May 1995.
[25]
F. Rohmund, A. V. Glotov, K. Hansen, and E. E. B. Campbell. Experimental studies of fusion and fragmentation of fullerenes. J. Phys. B, 29:5143--5161, 1996.
[26]
A. V. Saveliev, W. Merchan-Merchan, and L. A. Kennedy. Metal catalyzed synthesis of carbon nanostructures in an opposed flow methane oxygen flame. Combustion and Flame, 135:27--33, 2003.
[27]
S. Sen and I. K. Puri. Flame synthesis of carbon nanofibres and nanofibre composites containing encapsulated metal particles. Nanotechnology, 15:264--268, 2004.
[28]
Z. Shi, Y. Lian, X. Zhou, Z. Gu, V. Zhang, S. Iijima, L. Zhou, K. Yue, and S. Zhang. Carbon, 37:1449--1453, 1999.
[29]
S. J. Stuart, J. M. Hicks, and M. T. Mury. An iterative variable-timestep algorithm for molecular dynamics simulations. Mol. Sim., 29:177--186, 2003.
[30]
S. J. Stuart, D. E. Nugawela, and J. Jakowski. Multiscale approach to prediction of fullerene fusion products. 2012. to be submitted.
[31]
S. J. Stuart, A. B. Tutein, and J. A. Harrison. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys., 112:6472--6486, 2000.
[32]
M. Terrones, F. Banhart, N. Grobert, J.-C. Charlier, H. Terrones, and P. M. Ajayan. Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett., 89:075505, 2002.
[33]
J. Tersoff. Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett., 61:2879--2882, 1988.
[34]
J. Tersoff. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B, 37:6991--7000, 1988.

Cited By

View all
  • (2014)The hybrid Quantum Trajectory/Electronic Structure DFTB-based approach to Molecular DynamicsProceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment10.1145/2616498.2616503(1-8)Online publication date: 13-Jul-2014

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
XSEDE '12: Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme to the campus and beyond
July 2012
423 pages
ISBN:9781450316026
DOI:10.1145/2335755
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 16 July 2012

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ACM proceedings
  2. BLAS
  3. Cray XT5
  4. LAPACK
  5. advanced materials
  6. density-functional tight binding
  7. high-throughput
  8. linear algebra
  9. material science
  10. molecular dynamics
  11. multiscale-modeling
  12. quantum chemistry
  13. scientific libraries
  14. scientific-computing

Qualifiers

  • Research-article

Funding Sources

Conference

XSEDE12

Acceptance Rates

Overall Acceptance Rate 129 of 190 submissions, 68%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)1
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2014)The hybrid Quantum Trajectory/Electronic Structure DFTB-based approach to Molecular DynamicsProceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment10.1145/2616498.2616503(1-8)Online publication date: 13-Jul-2014

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media