Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2348283.2348312acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
research-article

Modeling the impact of short- and long-term behavior on search personalization

Published: 12 August 2012 Publication History

Abstract

User behavior provides many cues to improve the relevance of search results through personalization. One aspect of user behavior that provides especially strong signals for delivering better relevance is an individual's history of queries and clicked documents. Previous studies have explored how short-term behavior or long-term behavior can be predictive of relevance. Ours is the first study to assess how short-term (session) behavior and long-term (historic) behavior interact, and how each may be used in isolation or in combination to optimally contribute to gains in relevance through search personalization. Our key findings include: historic behavior provides substantial benefits at the start of a search session; short-term session behavior contributes the majority of gains in an extended search session; and the combination of session and historic behavior out-performs using either alone. We also characterize how the relative contribution of each model changes throughout the duration of a session. Our findings have implications for the design of search systems that leverage user behavior to personalize the search experience.

References

[1]
Bennett, P.N., Radlinski, F., White, R.W., and Yilmaz, E. (2011). Inferring and using location metadata to personalize web search. SIGIR, 135--144.
[2]
Bennett, P., Svore, K., and Dumais, S. (2010). Classification-enhanced ranking. WWW, 111--120.
[3]
Burges, C.J.C., Ragno, R., and Le, Q.V. (2006). Learning to rank with non-smooth cost functions. NIPS, 193--200.
[4]
Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., and Li, H. (2008). Context-aware query suggestion by mining click-through and session data. KDD, 875--883.
[5]
Cao, H., Hu, D.H., Shen, D., Jiang, D., Sun, J.-T., Chen, E., and Yang, Q. (2009). Context-aware query classification. SIGIR, 3--10.
[6]
Chapelle, O., Chang, Y., and Liu, T.-Y. (2010). The Yahoo! learning to rank challenge. http://learningtorankchallenge.yahoo.com.
[7]
Chirita, P., Nejdl, W., Paiu, R., and Kohlschutter, C. (2005). Using ODP metadata to personalize search. SIGIR, 178--185.
[8]
Collins-Thompson, K., Bennett, P.N., White, R.W., de la Chica, S., and Sontag, D. (2011). Personalizing web search results by reading level. CIKM, 403--412.
[9]
Daoud, L. Tamine-Lechani, L., Boughanem, M., and Chebaro, B. (2009). A session based personalized search using an ontological user profile. SOC, 1732--1736.
[10]
Downey, D., Dumais, S., Liebling, D. and Horvitz, E. (2008). Understanding the relationship between searchers' queries and information goals. CIKM, 449--458.
[11]
Dou, Z., Song, R. and Wen, J-R. (2007). A large-scale evalu-ation and analysis of personalized search strategies. WWW, 581--590.
[12]
Fox, S., Kuldeep, K., Mydland, M., Dumais, S., and White, T. (2005). Evaluating implicit measures to improve Web search. ACM TOIS, 23(2): 147--168.
[13]
Gao, J., Yuan, W., Li, X., Deng, K., and Nie, J-Y. (2009). Smoothing clickthrough data for web search ranking. SIGIR, 355--362.
[14]
Gauch, S., Chaffee, J., and Pretschner, A. (2003). Ontology-based user profiles for search and browsing. WIAS, 219--234.
[15]
Jones, R. and Klinkner, K.L. (2008). Beyond the session timeout: automatic hierarchical segmentation of search topics in query logs. CIKM, 699--708.
[16]
Kanoulas, E., Carterette, B., Clough, P., and Sanderson, M. (2010). Session track overview. TREC 2010.
[17]
Kotov, A., Bennett, P.N., White, R.W., Dumais, S.T., and Teevan, J. (2011). Modeling and analysis of cross-session search tasks. SIGIR, 5--14.
[18]
Li, L., Yang, Z., Wang, B. and Kitsuregawa, M. (2007). Dynamic adaptation strategies for long-term and short-term user profile to personalize search. APWeb/WAIM, 228--240.
[19]
Ma, Z., Pant, G., and Sheng, O. (2007). Interest-based personalized search. ACM TOIS, 25(1): Article 5.
[20]
Matthijs, N. and Radlinski, F. (2011). Personalizing web search using long term browsing history. WSDM, 25--34
[21]
Mihalkova, L. and Mooney, R. (2009). Learning to disambiguate search queries from short sessions. ECML, 111--127.
[22]
Piwowarski, B. and Zaragoza, H. (2007). Predictive user click models based on click-through history. CIKM, 175--182.
[23]
Shen, X., Dumais, S.T., and Horvitz, E. (2005). Analysis of topic dynamics in Web search. WWW, 1102--1103.
[24]
Shen, X., Tan, B., and Zhai, C. (2005). Context-sensitive information retrieval using implicit feedback. SIGIR, 43--50.
[25]
Sontag, D., Collins-Thompson, K., Bennett, P.N., White, R.W., Dumais, S.T., and von Billerbeck, B. (2012). Probabilistic models for personalizing web search. WSDM, 433--442.
[26]
Speretta, M. and Gauch, S. (2005). Personalizing search based on user search histories. WI, 622--628.
[27]
Sugiyama, K., Hatano, K., and Yoshikawa, M. (2004). Adaptive web search based on user profile constructed without any effort from users. WWW, 675--684.
[28]
Tan, B., Shen, X. and Zhai, C. (2006). Mining long-term search history to improve search accuracy. KDD, 718--723.
[29]
Teevan, J., Dumais, S.T., and Horvitz, E. (2005). Personalizing search via automated analysis of interests and activities. SIGIR, 449--456.
[30]
Teevan, J., Dumais, S.T., and Liebling, D.J. (2008). To per-sonalize or not to personalize: modeling queries with variation in user intent. SIGIR, 163--170.
[31]
Teevan, J., Liebling, D., and Geetha, G.R. (2011). Under-standing and prediction personal navigation. WSDM, 85--94.
[32]
White, R.W. and Drucker, S.M. (2007). Investigating behavioral variability in Web search. WWW, 21--30.
[33]
White, R.W., Bailey, P., and Chen, L. (2009). Predicting user interests from contextual information. SIGIR, 363--370.
[34]
White, R.W., Bennett, P.N. and Dumais. S.T. (2010). Predicting short-term interests using activity-based search context. CIKM, 1009--1018.
[35]
Wu, Q., Burges, C. J.C. Svore, K. M., and Gao, J. (2008). Ranking, boosting, and model adaptation. Microsoft Research Technical Report MSR-TR-2008--10.
[36]
Xiang, B., Jiang, D., Pei, J., Sun, X., Chen, E., and Li, H. (2010). Context-aware ranking in Web search. SIGIR, 451--458.
[37]
Zhong, F., Wang, D., Wang, G., Chen, W., Zhang, Y., Chen, Z., and Wang, H. (2010). Incorporating post-click behaviors into a click model. SIGIR, 355--362.

Cited By

View all
  • (2025)CAGS: Context-Aware Document Ranking With Contrastive Graph SamplingIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.349199637:1(89-101)Online publication date: Jan-2025
  • (2025)A survey on point-of-interest recommendations leveraging heterogeneous dataInformation Technology & Tourism10.1007/s40558-024-00301-3Online publication date: 4-Jan-2025
  • (2024)FIT-RAG: Black-Box RAG with Factual Information and Token ReductionACM Transactions on Information Systems10.1145/367695743:2(1-27)Online publication date: 9-Jul-2024
  • Show More Cited By

Index Terms

  1. Modeling the impact of short- and long-term behavior on search personalization

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Conferences
        SIGIR '12: Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval
        August 2012
        1236 pages
        ISBN:9781450314725
        DOI:10.1145/2348283
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Sponsors

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Publication History

        Published: 12 August 2012

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. personalization
        2. web search

        Qualifiers

        • Research-article

        Conference

        SIGIR '12
        Sponsor:

        Acceptance Rates

        Overall Acceptance Rate 792 of 3,983 submissions, 20%

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)146
        • Downloads (Last 6 weeks)12
        Reflects downloads up to 25 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2025)CAGS: Context-Aware Document Ranking With Contrastive Graph SamplingIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.349199637:1(89-101)Online publication date: Jan-2025
        • (2025)A survey on point-of-interest recommendations leveraging heterogeneous dataInformation Technology & Tourism10.1007/s40558-024-00301-3Online publication date: 4-Jan-2025
        • (2024)FIT-RAG: Black-Box RAG with Factual Information and Token ReductionACM Transactions on Information Systems10.1145/367695743:2(1-27)Online publication date: 9-Jul-2024
        • (2024)Advancing the Search Frontier with AI AgentsCommunications of the ACM10.1145/3655615Online publication date: 20-Aug-2024
        • (2024)Intent-Oriented Dynamic Interest Modeling for Personalized Web SearchACM Transactions on Information Systems10.1145/363981742:4(1-30)Online publication date: 8-Jan-2024
        • (2024)Optimization Methods for Personalizing Large Language Models through Retrieval AugmentationProceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3626772.3657783(752-762)Online publication date: 10-Jul-2024
        • (2024)Cognitive Personalized Search Integrating Large Language Models with an Efficient Memory MechanismProceedings of the ACM Web Conference 202410.1145/3589334.3645482(1464-1473)Online publication date: 13-May-2024
        • (2024)Encoding Group Interests With Persistent Homology for Personalized SearchIEEE Transactions on Systems, Man, and Cybernetics: Systems10.1109/TSMC.2024.341002954:9(5606-5616)Online publication date: Sep-2024
        • (2024)Query-Oriented Data Augmentation for Session SearchIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2024.341913136:11(6877-6888)Online publication date: 1-Nov-2024
        • (2024)Integrated Personalized and Diversified Search Based on Search LogsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2023.329100636:2(694-707)Online publication date: 1-Feb-2024
        • Show More Cited By

        View Options

        Login options

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        Figures

        Tables

        Media

        Share

        Share

        Share this Publication link

        Share on social media