Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

On the limits of resolution and visual angle in visualization

Published: 22 October 2012 Publication History

Abstract

This article describes a perceptual level-of-detail approach for visualizing data. Properties of a dataset that cannot be resolved in the current display environment need not be shown, for example, when too few pixels are used to render a data element, or when the element's subtended visual angle falls below the acuity limits of our visual system. To identify these situations, we asked: (1) What type of information can a human user perceive in a particular display environment? (2) Can we design visualizations that control what they represent relative to these limits? and (3) Is it possible to dynamically update a visualization as the display environment changes, to continue to effectively utilize our perceptual abilities? To answer these questions, we conducted controlled experiments that identified the pixel resolution and subtended visual angle needed to distinguish different values of luminance, hue, size, and orientation. This information is summarized in a perceptual display hierarchy, a formalization describing how many pixels—resolution—and how much physical area on a viewer's retina—visual angle—is required for an element's visual properties to be readily seen. We demonstrate our theoretical results by visualizing historical climatology data from the International Panel for Climate Change.

References

[1]
Anstis, S. 1998. Picturing peripheral acuity. Perception 27, 7, 817--825.
[2]
Ball, R., North, C., and Bowman, D. 2007. Move to improve: Promoting physical navigation to increase user performance with large displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'07). ACM, New York, 191--200.
[3]
Campbell, F. W. and Green, D. G. 1965. Monocular versus binocular visual acuity. Nature 208, 9, 191--192.
[4]
CIE. 1978. CIE Publication No. 15, Supplement Number 2 (E-1.3.1, 1971). Official recommendations on uniform color spaces, color-difference equations, and metric color terms. Commission Internationale de L'Èclairge.
[5]
Furnas, G. W. 1986. Generalized fisheye views. In Proceedings of the SIGCHI (CHI'86). ACM, New York, 16--34.
[6]
Glassner, A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann, San Francisco, CA.
[7]
Grinstein, G., Pickett, R., and Williams, M. 1989. EXVIS: An exploratory data visualization environment. In Proceedings of the Graphics Interface'89. 254--261.
[8]
Healey, C. G. 1996. Choosing effective colours for data visualization. In Proceedings of the 7th IEEE Visualization Conference (Vis'96). IEEE, Los Alamitos, CA, 263--270.
[9]
Healey, C. G. and Enns, J. T. 1999. Large datasets at a glance: Combining textures and colors in scientific visualization. IEEE Trans.Visualization Comput. Graph. 5, 2, 145--167.
[10]
Huber, D. E. and Healey, C. G. 2005. Visualizing data with motion. In Proceedings of the 16th IEEE Visualization Conference (Vis'05). IEEE, Los Alamitos, CA, 527--534.
[11]
Interrante, V. 2000. Harnessing natural textures for multivariate visualization. IEEE Comput. Graph. Appl. 20, 6, 6--11.
[12]
Johnson, C. R., Moorhead, R., Munzner, T., Pfsiter, H., Rheingans, P., and Yoo, T. S. 2006. NIH/NSF visualization research challenges report. IEEE, Los Alamitos, CA.
[13]
Joseph, J. S., Chun, M. M., and Nakayama, K. 1997. Attentional requirements in a ‘preattentive’ feature search task. Nature 387, 805--807.
[14]
Julész, B., Gilbert, E. N., and Shepp, L. A. 1973. Inability of humans to discriminate between visual textures that agree in second-order statistics—revisited. Perception 2, 391--405.
[15]
Lamping, J. and Rao, R. 1996. The hyperbolic browser: A focus+context technique for visualizing large hierarchies. J. Visual Lang. Comput. 7, 1, 33--55.
[16]
Legge, G. E., Parish, D. H., Luebker, A., and Wurm, L. H. 1990. Psychophysics of reading. XI. Comparing color contrast and luminance contrast. J. Optical Soc. Amer. A 7, 10, 2002--2010.
[17]
Legge, G. E., Rubin, G. S., and Luebker, A. 1987. Psychophysics of reading. V: The role of contrast in normal vision. Vision Res. 27, 7, 1165--1177.
[18]
Liu, B., Dijkstra, T. M. H., and Oomes, A. H. J. 2002. The beholder's share in the perception of orientation of 2D shapes. Perception Psychophys. 64, 8, 1227--1247.
[19]
Malik, J. and Perona, P. 1990. Preattentive texture discrimination with early vision mechanisms. J. Optical Soc. Amer. A 7, 5, 923--932.
[20]
Marr, D. 1982. Vision. W. H. Freeman, San Francisco, CA.
[21]
McCormick, B. H., DeFanti, T. A., and Brown, M. D. 1987. Visualization in scientific computing. Comput. Graph. 21, 6, 1--14.
[22]
Pollack, I. 1968. Methodological examination of the PEST (parametric estimation by sequential tracking) procedure. Perception Psychophys. 3, 285--289.
[23]
Rao, A. R. and Lohse, G. L. 1993. Towards a texture naming system: Identifying relevant dimensions of texture. In Proceedings of the 4th IEEE Visualization Conference (Vis'93), IEEE, Los Alamitos, CA, 220--227.
[24]
Rheingans, P. and Tebbs, B. 1990. A tool for dynamic explorations of color mappings. Comput. Graph. 24, 2, 145--146.
[25]
Rogowitz, B. E. and Treinish, L. A. 1993. An architecture for perceptual rule-based visualization. In Proceedings of the 4th IEEE Visualization Conference (Vis'93), IEEE, Los Alamitos, CA, 236--243.
[26]
Sagi, D. and Julész, B. 1987. Short-range limitation on detection of feature differences. Spatial Vision 2, 1, 39--49
[27]
Smith, P. H. and Van Rosendale, J. 1998. Data and visualization corridors report on the 1998 CVD workshop series (sponsored by DOE and NSF). Tech. rep. CACR-164, Center for Advanced Computing Research, California Institute of Technology.
[28]
Thomas, J. J. and Cook, K. A. 2005. Illuminating the Path: Research and Development Agenda for Visual Analytics. IEEE, Los Alamitos, CA.
[29]
Ulrich, R. and Miller, J. 2004. Threshold estimation in two-alternative forced choice (2AFC) tasks: The Spearman-Kárber method. Perception Psychophys. 66, 3, 517--533.
[30]
Wales, R. and Blake, R. R. 1970. Rule for obtaining 75% threshold with the staircase method. J. Optical Soc. America 60, 2, 284--285.
[31]
Ware, C. 1988. Color sequences for univariate maps: Theory, experiments, and principles. IEEE Comput. Graph. Appl. 8, 5, 41--49.
[32]
Ware, C. 2012. Information Visualization: Perception for Design 3rd Ed., Morgan Kaufmann, San Francisco, CA.
[33]
Ware, C. and Knight, W. 1995. Using visual texture for information display. ACM Trans. Graph. 14, 1, 3--20.
[34]
Watson, A. B. and Ahumada, Jr., A. J. 2005. A standard model for foveal detection of spatial contrast. J. Vision 5, 9, 717--740.
[35]
Wyszecki, G. and Stiles, W. S. 1982. Color Science: Concepts and Methods, Quantitative Data and Formulae 2nd Ed., Wiley, New York.
[36]
Yost, B., Haciahmetoglu, Y., and North, C. 2007. Beyond visual acuity: The perceptual scalability of information visualizations for large displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'07), ACM, New York, 101--110.
[37]
Zhang, X. and Wandell, B. A. 1997. A spatial extension of CIELAB for digital color-image reproduction. J. Soc. Inf. Display 5, 1, 61--63.

Cited By

View all
  • (2024)Visual Analytics for NASCAR MotorsportsJournal of Data Science10.6339/24-JDS1141(1-22)Online publication date: 2-Jul-2024
  • (2024)Believing is seeing – the deceptive influence of bias in quantitative microscopyJournal of Cell Science10.1242/jcs.261567137:1Online publication date: 10-Jan-2024
  • (2024)Application of Contrast Driven Color-Class Assignment to Four Categorical Data Visualization DiagramsComputer Vision, Imaging and Computer Graphics Theory and Applications10.1007/978-3-031-66743-5_15(324-347)Online publication date: 22-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Applied Perception
ACM Transactions on Applied Perception  Volume 9, Issue 4
October 2012
109 pages
ISSN:1544-3558
EISSN:1544-3965
DOI:10.1145/2355598
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 22 October 2012
Accepted: 01 July 2012
Revised: 01 July 2012
Received: 01 July 2011
Published in TAP Volume 9, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Hue
  2. luminance
  3. orientation
  4. resolution
  5. size
  6. visual acuity
  7. visual angle
  8. visual perception
  9. visualization

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)3
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Visual Analytics for NASCAR MotorsportsJournal of Data Science10.6339/24-JDS1141(1-22)Online publication date: 2-Jul-2024
  • (2024)Believing is seeing – the deceptive influence of bias in quantitative microscopyJournal of Cell Science10.1242/jcs.261567137:1Online publication date: 10-Jan-2024
  • (2024)Application of Contrast Driven Color-Class Assignment to Four Categorical Data Visualization DiagramsComputer Vision, Imaging and Computer Graphics Theory and Applications10.1007/978-3-031-66743-5_15(324-347)Online publication date: 22-Aug-2024
  • (2023)Studies of Part-to-Whole Glanceable Visualizations on Smartwatch Faces2023 IEEE 16th Pacific Visualization Symposium (PacificVis)10.1109/PacificVis56936.2023.00028(187-196)Online publication date: Apr-2023
  • (2023)AQUA: A Framework for Spatiotemporal Analysis and Visualizations of Water Quality Data at Scale2023 IEEE International Conference on Big Data (BigData)10.1109/BigData59044.2023.10386898(1555-1562)Online publication date: 15-Dec-2023
  • (2022)Terrain visibility impact on the preparation of landslide inventories: a practical example in Darjeeling district (India)Natural Hazards and Earth System Sciences10.5194/nhess-22-2929-202222:9(2929-2941)Online publication date: 6-Sep-2022
  • (2021)Defect or Design? Leveraging the Angle of Opportunity for Detecting Scratches on Brushed Aluminium SurfacesIEEE Access10.1109/ACCESS.2021.30935269(99526-99538)Online publication date: 2021
  • (2021)r.survey: a tool for calculating visibility of variable-size objects based on orientationInternational Journal of Geographical Information Science10.1080/13658816.2021.1942476(1-24)Online publication date: 28-Jun-2021
  • (2021)Gazelle Hunting Strategies in the Early Ahmarian: Close-Range Visuospatial Characteristics of Site Locations Indicate Spatially Focused Hunting Strategies on Gazella sp. During the Early AhmarianJournal of Paleolithic Archaeology10.1007/s41982-021-00090-94:3Online publication date: 13-Jul-2021
  • (2021)Data Visualization: The BasicsBusiness Analytics10.1007/978-3-030-87023-2_4(85-126)Online publication date: 7-Oct-2021
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media