Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Substantial improvements in the set-covering projection classifier CHIRP (composite hypercubes on iterated random projections)

Published: 18 December 2012 Publication History

Abstract

In Wilkinson et al. [2011] we introduced a new set-covering random projection classifier that achieved average error lower than that of other classifiers in the Weka platform. This classifier was based on an L norm distance function and exploited an iterative sequence of three stages (projecting, binning, and covering) to deal with the curse of dimensionality, computational complexity, and nonlinear separability. We now present substantial changes that improve robustness and reduce training and testing time by almost an order of magnitude without jeopardizing CHIRP's outstanding error performance.

References

[1]
Abdullah, M. R., Toh, K.-A., and Srinivasan, D. 2006. A framework for empirical classifiers comparison. In Proceedings of the Symposium on Industrial Electronics and Applications. IEEE.
[2]
Achlioptas, D. 2001. Database-Friendly random projections. In Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS'01). ACM, New York, 274--281.
[3]
Agrawal, R., Gehrke, J., Gunopulos, D., and Raghavan, P. 1998. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of the ACM SIGMOD Conference on Management of Data. 94--105.
[4]
Aguilar, J., Riquelme, J., and Toro, M. 1998. Decision queue classifier for supervised learning using rotated hyperboxes. In Proceedings of the 6th Ibero-American Conference on AI: Progress in Artificial Intelligence. Lecture Notes in Computer Science, vol. 4045, Springer, 326--336.
[5]
Alpern, B. and Carter, L. 1991. The hyperbox. In Proceedings of the IEEE Information Visualization Conference. 133--134.
[6]
Anand, A., Wilkinson, L., and Tuan, D. N. 2009. An L-infinity norm visual classifier. In Proceedings of the International Conference on Data Mining (ICDM). 687--692.
[7]
Asuncion, A. and Newman, D. 2007. UCI machine learning repository. http://www.ics.uci.edu/~mlearn/MLRepository.html.
[8]
Bickel, P. and Levina, E. 2004. Some theory for Fisher's linear discriminant function, ‘naive Bayes’, and some alternatives when there are many more variables than observations. Bernoulli 10, 989--1010.
[9]
Breiman, L., Friedman, J., Olshen, R., and Stone, C. 1984. Classification and Regression Trees. Wadsworth, Belmont, CA.
[10]
Bu, S., Lakshmanan, L. V. S., and Ng, R. T. 2005. MDL summarization with holes. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB '05). VLDB Endowment, 433--444.
[11]
Dietterich, T. G. and Bakiri, G. 1995. Solving multiclass learning problems via error-correcting output codes. J. AI Res. 2, 263--286.
[12]
Flick, T. E., Jones, L. K., Priest, R. G., and Herman, C. 1990. Pattern classification using projection pursuit. Pattern Recogn. 23, 1367--1376.
[13]
Gao, B. 2002. Hyper-rectangle-based discriminative data generalization and applications in data. Ph.D. thesis, Simon Fraser University.
[14]
Gao, B. J. and Ester, M. 2006. Turning clusters into patterns: Rectangle-based discriminative data description. In Proceedings of the 6th International Conference on Data Mining (ICDM'06). IEEE Computer Society, 200--211.
[15]
Guo, Y., Hastie, T., and Tibshirani, R. 2005. Regularized discriminant analysis and its application in microarrays. Biostatist. 1, 1--18.
[16]
Hanczar, B., Hua, J., Sima, C., Weinstein, J., Bittner, M., and Dougherty, E. R. 2010. Small-sample precision of roc-related estimates. Bioinf. 26, 822--820.
[17]
Hand, D. 2010. Measuring classifier performance: A coherent alternative to the area under the roc curve. Mach. Learn. 77, 103--123.
[18]
Hastie, T., Tibshirani, R., and Friedman, J. H. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer.
[19]
Hegde, C. and Baraniuk, R. 2007. Random projections for manifold learning. In Proceedings of the Conference on Advances in Neural Information Processing Systems (NIPS'07). MIT Press, Cambridge, MA.
[20]
Hosking, J. 1990. L-Moments: Analysis and estimation of distributions using linear combinations of order statistics. J. Roy. Statist. Soc. B 52, 105--124.
[21]
Jimenez, L. O. and Landgrebe, D. A. 1995. Projection pursuit for high dimensional feature reduction: paralleland sequential approaches. In Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS '95. Vol. 1. 148--150.
[22]
Johnson, W. B. and Lindenstrauss, J. 1984. Lipschitz mapping into Hilbert space. Contemp. Math. 26, 189--206.
[23]
King, R., Feng, C., and Sutherland, A. 1995. Statlog: Comparison of classification algorithms on large real-world problems. Appl. Artif. Intell. 9.
[24]
Lazarsfeld, P. F. and Henry, N. 1968. Latent Structure Analysis. Houghton Mifflin, Boston.
[25]
Lee, E.-K., Cook, D., Klinke, S., and Lumley, T. 2005. Projection pursuit for exploratory supervised classification. J. Comput. Graph. Statis. 14, 831--846.
[26]
Li, P. 2010. Robust LogitBoost and Adaptive Base Class (ABC) LogitBoost. In Proceedings of the IEEE UAI.
[27]
Li, P., Hastie, T. J., and Church, K. W. 2006. Very sparse random projections. In Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'06). ACM, New York, 287--296.
[28]
Marchand, M. and Shawe-Taylor, J. 2002. The set covering machine. J. Mach. Learn. Res. 3, 723--746.
[29]
Mosteller, F. 1948. A k-sample slippage test for an extreme population. Ann. Math. Statist. 19, 58--65.
[30]
Pu, K. Q. and Mendelzon, A. O. 2005. Concise descriptions of subsets of structured sets. ACM Trans. Datab. Syst. 30, 1, 211--248.
[31]
Quinlan, J. R. 1993. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning). Morgan Kaufmann.
[32]
Rivest, R. L. 1987. Learning decision lists. Mach. Learn. 2, 229--246.
[33]
Scott, D. W. 1979. On optimal and data-based histograms. Biometrika 66, 605--610.
[34]
Silverman, B. 1986. Density Estimation for Statistics and Data Analysis. Chapman & Hall, New York.
[35]
Simpson, P. K. 1992. Fuzzy min-max neural network, i: Classification. IEEE Trans. Neural Netw. 3, 776--786.
[36]
Sokolova, M., Japkowicz, N., Marchand, M., and Shawe-taylor, J. 2003. The decision list machine. In Advances in Neural Information Processing Systems 15, MIT Press, 921--928.
[37]
Statnikov, A., Aliferis, C. F., Tsamardinos, I., Hardin, D., and Levy, S. 2005. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinf. 21, 5, 631--643.
[38]
Sturges, H. A. 1926. The choice of a class interval. J. Amer. Statist. Assoc. 21, 65--66.
[39]
Tibshirani, R. 1995. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. B 58, 267--288.
[40]
Tukey, J. 1959. A quick, compact, two-sample test to Duckworth's specifications. Technometrics, 31--48.
[41]
Üney, F. and Türkay, M. 2006. A mixed-integer programming approach to multi-class data classification problem. Euro, J. Oper. Res. 173, 910--920.
[42]
Wainer, H. 1976. Estimating coefficients in linear models: It don't make no nevermind. Psychol. Bull. 83, 2, 213--217.
[43]
Wand, M. P. 1997. Data-Based choice of histogram bin width. The Amer. Statist. 51, 1, 59--64.
[44]
Wilkinson, L., Anand, A., and Dang, T. 2011. CHIRP: A new classier based on composite hypercubes on iterated random projections. In Proceedings of ACM Conference on Knowledge Discovery and Data Mining.
[45]
Witten, I. H., Frank, E., Trigg, L., Hall, M., Holmes, G., and Cunningham, S. J. 1999. Weka: Practical machine learning tools and techniques with Java implementations. In Proceedings of the ICONIP/ANZIIS/ANNES'99 Workshop on Emerging Knowledge Engineering and Connectionist-Based Information Systems. 192--196.

Cited By

View all
  • (2018)A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide SusceptibilityJournal of the Geological Society of India10.1007/s12594-018-0862-591:3(355-362)Online publication date: 21-Mar-2018

Index Terms

  1. Substantial improvements in the set-covering projection classifier CHIRP (composite hypercubes on iterated random projections)

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Knowledge Discovery from Data
    ACM Transactions on Knowledge Discovery from Data  Volume 6, Issue 4
    Special Issue on the Best of SIGKDD 2011
    December 2012
    141 pages
    ISSN:1556-4681
    EISSN:1556-472X
    DOI:10.1145/2382577
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 18 December 2012
    Accepted: 01 October 2012
    Revised: 01 October 2012
    Received: 01 October 2011
    Published in TKDD Volume 6, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Supervised classification
    2. random projections

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 14 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2018)A Novel Classifier Based on Composite Hyper-cubes on Iterated Random Projections for Assessment of Landslide SusceptibilityJournal of the Geological Society of India10.1007/s12594-018-0862-591:3(355-362)Online publication date: 21-Mar-2018

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media