Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2422436.2422495acmconferencesArticle/Chapter ViewAbstractPublication PagesitcsConference Proceedingsconference-collections
research-article

H-wise independence

Published: 09 January 2013 Publication History

Abstract

For a hypergraph H on the vertex set {1,...,n}, a distribution D = (D_1,...,D_n) over {0,1}^n is H-wise independent if every restriction of D to indices which form an edge in H is uniform. This generalizes the notion of k-wise independence obtained by taking H to be the complete n vertex k-uniform hypergraph. This generalization was studied by Schulman (STOC 1992), who presented constructions of H-wise independent distributions that are linear, i.e., the samples are strings of inner products (over F2) of a fixed set of vectors with a uniformly chosen random vector. Let l(H) denote the minimum possible size of a sample space of a uniform H-wise independent distribution. The l parameter is well understood for the special case of k-wise independence. In this work we study the notion of H-wise independence and the l parameter for general graphs and hypergraphs. For graphs, we show how the l parameter relates to standard graph parameters (e.g., clique number, chromatic number, Lovasz theta function, minrank). We derive algorithmic and hardness results for this parameter as well as an explicit construction of graphs G for which l(G) is exponentially smaller than the size of the sample space of any linear G-wise independent distribution. For hypergraphs, we study the problem of testing whether a given distribution is H-wise independent, generalizing results of Alon et al. (STOC 2007).

References

[1]
N. Alon. A parallel algorithmic version of the local lemma. Random Struct. Algorithms, 2(4):367--378, 1991. Preliminary version in FOCS'91.
[2]
N. Alon, A. Andoni, T. Kaufman, K. Matulef, R. Rubinfeld, and N. Xie. Testing k-wise and almost k-wise independence. In STOC, pages 496--505, 2007.
[3]
N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms, 7(4):567--583, 1986.
[4]
N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple construction of almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289--304, 1992. Preliminary version in FOCS'90.
[5]
N. Alon, O. Goldreich, and Y. Mansour. Almost k-wise independence versus k-wise independence. Inf. Process. Lett., 88(3):107--110, 2003.
[6]
Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol. Index coding with side information. In FOCS, pages 197--206, 2006.
[7]
W. Beckner. Inequalities in Fourier analysis. Ann. of Math., 102:159--182, 1975.
[8]
B. Berger and J. Rompel. Simulating (log c n)-wise independence in NC. J. ACM, 38(4):1026--1046, 1991. Preliminary version in FOCS'89.
[9]
S. Bernstein. The Theory of Probabilities. Gostehizdat Publishing House, Moscow, 1946.
[10]
A. Bonami. Étude des coefficients de Fourier des fonctions de Lp(G). Annales de l'Institut Fourier, 20(2):335--402, 1970.
[11]
J. Boyar, G. Brassard, and R. Peralta. Subquadratic zero-knowledge. J. ACM, 42(6):1169--1193, 1995. Preliminary version in FOCS'91.
[12]
E. Chlamtac. Approximation algorithms using hierarchies of semidefinite programming relaxations. In FOCS, pages 691--701, 2007.
[13]
B. Chor, O. Goldreich, J. Håstad, J. Friedman, S. Rudich, and R. Smolensky. The bit extraction problem of $t$-resilient functions. In FOCS, pages 396--407, 1985.
[14]
I. Dinur, E. Mossel, and O. Regev. Conditional hardness for approximate coloring. SIAM J. Comput., 39(3):843--873, 2009. Preliminary version in STOC'06.
[15]
I. Dinur and I. Shinkar. On the conditional hardness of coloring a 4-colorable graph with super-constant number of colors. In APPROX-RANDOM, pages 138--151, 2010.
[16]
P. Erdös. Problems and results in graph theory and combinatorial analysis. In Proceedings of the Fifth British Combinatorial Conference, pages 169--192, 1975.
[17]
U. Feige. Randomized graph products, chromatic numbers, and the Lovász θ-function. Combinatorica, 17(1):79--90, 1997. Preliminary version in STOC'95.
[18]
P. Frankl and V. Rödl. Forbidden intersections. Trans. Amer. Math. Soc., 300(1):259--286, 1987.
[19]
W. Haemers. On some problems of Lovász concerning the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(2):231--232, 1979.
[20]
W. Haemers. An upper bound for the Shannon capacity of a graph. In Algebraic methods in graph theory, Vol. I, II (Szeged, 1978), volume 25 of Colloq. Math. Soc. János Bolyai, pages 267--272. North-Holland, Amsterdam, 1981.
[21]
P. Hell and J. Ne\vset\vril. On the complexity of H-coloring. J. Comb. Theory, Ser. B, 48(1):92--110, 1990.
[22]
D. R. Karger, R. Motwani, and M. Sudan. Approximate graph coloring by semidefinite programming. J. ACM, 45(2):246--265, 1998. Preliminary version in FOCS'94.
[23]
R. M. Karp and A. Wigderson. A fast parallel algorithm for the maximal independent set problem. J. ACM, 32(4):762--773, 1985. Preliminary version in STOC'84.
[24]
K. Kawarabayashi and M. Thorup. Combinatorial coloring of 3-colorable graphs. In FOCS, 2012. To appear.
[25]
S. Khot. On the power of unique 2-prover 1-round games. In STOC, pages 767--775, 2002.
[26]
D. E. Knuth. The sandwich theorem. Electronic J. Combinatorics, 1:1, 1994.
[27]
D. Koller and N. Megiddo. Constructing small sample spaces satisfying given constraints. SIAM J. Discrete Math., 7(2):260--274, 1994. Preliminary version in STOC'93.
[28]
L. Lovász. On the Shannon capacity of a graph. IEEE Trans. Inform. Theory, 25(1):1--7, 1979.
[29]
M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM J. Comput., 15(4):1036--1053, 1986.
[30]
M. Luby. Removing randomness in parallel computation without a processor penalty. J. Comput. System Sci., 47(2):250--286, 1993.
[31]
M. Luby and A. Wigderson. Pairwise independence and derandomization. Foundations and Trends in Theoretical Computer Science, 1(4), 2005.
[32]
R. A. Moser. A constructive proof of the Lovász local lemma. In STOC, pages 343--350, 2009.
[33]
R. Motwani, J. Naor, and M. Naor. The probabilistic method yields deterministic parallel algorithms. J. Comput. System Sci., 49(3):478--516, 1994. Preliminary version in FOCS'89.
[34]
J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. SIAM J. Comput., 22(4):838--856, 1993. Preliminary version in STOC'90.
[35]
R. Rubinfeld and N. Xie. Testing non-uniform k-wise independent distributions over product spaces. In ICALP (1), pages 565--581, 2010.
[36]
L. J. Schulman. Sample spaces uniform on neighborhoods. In STOC, pages 17--25, 1992.
[37]
C. E. Shannon. The zero error capacity of a noisy channel. Institute of Radio Engineers, Transactions on Information Theory, IT-2(September):8--19, 1956.
[38]
N. Xie. Personal communication, 2012.

Cited By

View all
  • (2024)Hardness of Linear Index Coding on Perturbed InstancesIEEE Transactions on Information Theory10.1109/TIT.2023.334729670:2(1388-1396)Online publication date: Feb-2024
  • (2019)On Minrank and Forbidden SubgraphsACM Transactions on Computation Theory10.1145/332281711:4(1-13)Online publication date: 7-May-2019

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ITCS '13: Proceedings of the 4th conference on Innovations in Theoretical Computer Science
January 2013
594 pages
ISBN:9781450318594
DOI:10.1145/2422436
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 09 January 2013

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. derandomization
  2. h-wise independence
  3. k-wise independence

Qualifiers

  • Research-article

Conference

ITCS '13
Sponsor:
ITCS '13: Innovations in Theoretical Computer Science
January 9 - 12, 2013
California, Berkeley, USA

Acceptance Rates

Overall Acceptance Rate 172 of 513 submissions, 34%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Hardness of Linear Index Coding on Perturbed InstancesIEEE Transactions on Information Theory10.1109/TIT.2023.334729670:2(1388-1396)Online publication date: Feb-2024
  • (2019)On Minrank and Forbidden SubgraphsACM Transactions on Computation Theory10.1145/332281711:4(1-13)Online publication date: 7-May-2019

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media