Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2463209.2488787acmconferencesArticle/Chapter ViewAbstractPublication PagesdacConference Proceedingsconference-collections
research-article

Pareto epsilon-dominance and identifiable solutions for BioCAD modeling

Published: 29 May 2013 Publication History
  • Get Citation Alerts
  • Abstract

    We propose a framework to design metabolic pathways in which many objectives are optimized simultaneously. This allows to characterize the energy signature in models of algal and mitochondrial metabolism. The optimal design and assessment of the model is achieved through a multi-objective optimization technique driven by epsilon-dominance and identifiability analysis. A faster convergence process with robust candidate solutions is permitted by a relaxed Pareto dominance, regulating the granularity of the approximation of the Pareto front. Our framework is also suitable for black-box analysis, enabling to investigate and optimize any biological pathway modeled with ODEs, DAEs, FBA and GPR.

    References

    [1]
    U. Sengupta, S. Ukil, N. Dimitrova, and S. Agrawal. Expression-based network biology identifies alteration in key regulatory pathways of type 2 diabetes and associated risk/complications. PloS one, 4(12):e8100, 2009.
    [2]
    J. N. Bazil, G. T. Buzzard, and A. E. Rundell. Modeling mitochondrial bioenergetics with integrated volume dynamics. PLoS computational biology, 6(1):e1000632, 2010.
    [3]
    A. C. Smith and A. J. Robinson. A metabolic model of the mitochondrion and its use in modelling diseases of the tricarboxylic acid cycle. BMC systems biology, 5(1):102, 2011.
    [4]
    J. D. Orth, I. Thiele, and B. O. Palsson. What is flux balance analysis? Nature Biotechnology, 28(3):245--248, 2010.
    [5]
    R. L. Chang, L. Ghamsari, A. Manichaikul, E. F. Y. Hom, S. Balaji, W. Fu, Y. Shen, T. Hao, B. O. Palsson, and K. Salehi-Ashtiani. Metabolic network reconstruction of chlamydomonas offers insight into light-driven algal metabolism. Molecular systems biology, 7(1):518, 2011.
    [6]
    O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, K. Kavanagh, and U. Alon. Evolutionary trade-offs, pareto optimality, and the geometry of phenotype space. Science, 2012.
    [7]
    K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation, 6(2):182--197, 2002.
    [8]
    R. Umeton, G. Stracquadanio, A. Sorathiya, P. Liò, A. Papini, and G. Nicosia. Design of robust metabolic pathways. In Proceedings of the 48th Design Automation Conference, pages 747--752. ACM, 2011.
    [9]
    M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput., 10(3):263--282, September 2002.
    [10]
    L. Breiman and J. H. Friedman. Estimating optimal transformations for multiple regression and correlation. Journal of the American Statistical Association, 80(391):580--598, 1985.
    [11]
    S. Hengl, C. Kreutz, J. Timmer, and T. Maiwald. Data-based identifiability analysis of non-linear dynamical models. Bioinformatics, 23(19):2612--2618, 2007.
    [12]
    J. Costanza, G. Carapezza, C. Angione, P. Lió, and G. Nicosia. Robust design of microbial strains. Bioinformatics, 28(23):3097--3104, 2012.
    [13]
    M. E. Dumas. Metabolome 2.0: quantitative genetics and network biology of metabolic phenotypes. Molecular BioSystems, 2012.
    [14]
    C. Angione, G. Carapezza, J. Costanza, P. Lió, and G. Nicosia. Rational design of organelle compartments in cells. EMBnet. journal, 18(B):p. 20, 2012.
    [15]
    M. D. Morris. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2):161--174, 1991.

    Cited By

    View all
    • (2019)A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on $\epsilon$ -DominanceIEEE Access10.1109/ACCESS.2019.28969627(18267-18283)Online publication date: 2019
    • (2016)Metabolic Circuit Design Automation by Multi-objective BioCADMachine Learning, Optimization, and Big Data10.1007/978-3-319-51469-7_3(30-44)Online publication date: 25-Dec-2016
    • (2015)Pareto Optimal Design for Synthetic BiologyIEEE Transactions on Biomedical Circuits and Systems10.1109/TBCAS.2015.24672149:4(555-571)Online publication date: Aug-2015

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    DAC '13: Proceedings of the 50th Annual Design Automation Conference
    May 2013
    1285 pages
    ISBN:9781450320719
    DOI:10.1145/2463209
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 May 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Conference

    DAC '13
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 1,770 of 5,499 submissions, 32%

    Upcoming Conference

    DAC '25
    62nd ACM/IEEE Design Automation Conference
    June 22 - 26, 2025
    San Francisco , CA , USA

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    Cited By

    View all
    • (2019)A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on $\epsilon$ -DominanceIEEE Access10.1109/ACCESS.2019.28969627(18267-18283)Online publication date: 2019
    • (2016)Metabolic Circuit Design Automation by Multi-objective BioCADMachine Learning, Optimization, and Big Data10.1007/978-3-319-51469-7_3(30-44)Online publication date: 25-Dec-2016
    • (2015)Pareto Optimal Design for Synthetic BiologyIEEE Transactions on Biomedical Circuits and Systems10.1109/TBCAS.2015.24672149:4(555-571)Online publication date: Aug-2015

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media