Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2484028.2484111acmconferencesArticle/Chapter ViewAbstractPublication PagesirConference Proceedingsconference-collections
short-paper

Kinship contextualization: utilizing the preceding and following structural elements

Published: 28 July 2013 Publication History

Abstract

The textual context of an element, structurally, contains traces of evidences. Utilizing this context in scoring is called contextualization. In this study we hypothesize that the context of an XML-element originated from its \textit{preceding} and \textit{following} elements in the sequential ordering of a document improves the quality of retrieval. In the tree form of the document's structure, \textit{kinship} contextualization means, contextualization based on the horizontal and vertical elements in the \textit{kinship tree,} or elements in closer to a wider structural kinship. We have tested several variants of kinship contextualization and verified notable improvements in comparison with the baseline system and gold standards in the retrieval of focused elements.

References

[1]
P. Arvola, M. Junkkari, and J. Kekäläinen. Generalized Contextualization Method for XML Information Retrieval. In Proc. of the 14th ACM CIKM, pages 20--27. ACM, 2005.
[2]
P. Arvola, J. Kekäläinen, and M. Junkkari. The Effect of Contextualization at Different Granularity Levels in Content-oriented XML Retrieval. In Proc. of the 17th ACM CIKM, pages 1491--1492. ACM, 2008.
[3]
P. Arvola, J. Kek\"al\"ainen, and M. Junkkari. Contextualization Models for XML Retrieval. Info. Processing & Management, pages 1--15, 2011.
[4]
S. Geva, J. Kamps, M. Lethonen, R. Schenkel, J. Thom, and A. Trotman. Overview of the inex 2009 ad hoc track. Focused Retrieval and Evaluation, pages 4--25, 2010.
[5]
Y. Mass and M. Mandelbrod. Component Ranking and Automatic Query Refinement for XML Retrieval. Advances in XML IR, pages 1--18, 2005.
[6]
M. A. Norozi, P. Arvola, and A. P. de Vries. Contextualization using hyperlinks and internal hierarchical structure of wikipedia documents. In Proc. of the 21st ACM CIKM, pages 734--743. ACM, 2012.
[7]
P. Ogilvie and J. Callan. Hierarchical Language Models for XML Component Retrieval. Advances in XML IR, pages 269--285, 2005.
[8]
G. Ramirez Camps. Structural Features in XML Retrieval. D thesis, SIKS, the Dutch Research School for Information and Knowledge Systems., 2007.
[9]
Schenkel, R. and Suchanek, F.M. and Kasneci, G. YAWN: A Semantically Annotated Wikipedia XML Corpus. Proc. of GIFachtagung für Datenbanksysteme in Business Technologie und Web BTW2007, 103 (Btw): 277--291, 2007.
[10]
J. A. Shaw and E. A. Fox. Combination of multiple searches. In The 2nd TREC. Citeseer, 1994.
[11]
B. Sigurbjörnsson, J. Kamps, and M. De Rijke. An Element-based Approach to XML Retrieval. In INEX 2003 Workshop Proc., pages 19--26, 2004.

Cited By

View all
  • (2023)Heterogeneous graph attention networks for passage retrievalInformation Retrieval10.1007/s10791-023-09424-326:1-2Online publication date: 16-Nov-2023
  • (2022)Passage Retrieval on Structured Documents Using Graph Attention NetworksAdvances in Information Retrieval10.1007/978-3-030-99739-7_2(13-21)Online publication date: 10-Apr-2022
  • (2018)Contextualization in Structured Text RetrievalEncyclopedia of Database Systems10.1007/978-1-4614-8265-9_81(611-613)Online publication date: 7-Dec-2018
  • Show More Cited By

Index Terms

  1. Kinship contextualization: utilizing the preceding and following structural elements

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGIR '13: Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval
    July 2013
    1188 pages
    ISBN:9781450320344
    DOI:10.1145/2484028
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 28 July 2013

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. contextualization
    2. schema agnostic search
    3. xml retrieval

    Qualifiers

    • Short-paper

    Conference

    SIGIR '13
    Sponsor:

    Acceptance Rates

    SIGIR '13 Paper Acceptance Rate 73 of 366 submissions, 20%;
    Overall Acceptance Rate 792 of 3,983 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)1
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 15 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Heterogeneous graph attention networks for passage retrievalInformation Retrieval10.1007/s10791-023-09424-326:1-2Online publication date: 16-Nov-2023
    • (2022)Passage Retrieval on Structured Documents Using Graph Attention NetworksAdvances in Information Retrieval10.1007/978-3-030-99739-7_2(13-21)Online publication date: 10-Apr-2022
    • (2018)Contextualization in Structured Text RetrievalEncyclopedia of Database Systems10.1007/978-1-4614-8265-9_81(611-613)Online publication date: 7-Dec-2018
    • (2017)Contextualization in Structured Text RetrievalEncyclopedia of Database Systems10.1007/978-1-4899-7993-3_81-2(1-3)Online publication date: 31-Jul-2017
    • (2013)Selection fusion in semi-structured retrievalProceedings of the 22nd ACM international conference on Information & Knowledge Management10.1145/2505515.2505686(1291-1300)Online publication date: 27-Oct-2013

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media