Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2514601.2514622acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicailConference Proceedingsconference-collections
research-article

Toward constructing evidence-based legal arguments using legal decision documents and machine learning

Published: 10 June 2013 Publication History

Abstract

This paper explores how to extract argumentation-relevant information automatically from a corpus of legal decision documents, and how to build new arguments using that information. For decision texts, we use the Vaccine/Injury Project (V/IP) Corpus, which contains default-logic annotations of argument structure. We supplement this with presuppositional annotations about entities, events, and relations that play important roles in argumentation, and about the level of confidence that arguments would be successful. We then propose how to integrate these semantic-pragmatic annotations with syntactic and domain-general semantic annotations, such as those generated in the DeepQA architecture, and outline how to apply machine learning and scoring techniques similar to those used in the IBM Watson system for playing the Jeopardy! question-answer game. We replace this game-playing goal, however, with the goal of learning to construct legal arguments.

References

[1]
Fan, J., Kalyanpur, A., Gondek, D. C., and Ferrucci, D. A. Automatic knowledge extraction from documents. IBM J. Res. & Dev. Vol. 56 No. 3/4 Paper 5 May/July (2012).
[2]
Ferrucci, D. Introduction to "This is Watson". IBM J. Res. & Dev. Vol. 56 No. 3/4 Paper 1 May/July (2012).
[3]
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A., Lally, A., Murdock, J. W., Nyberg, E., Prager, J., Schlaefer, N., Welty, C. Building Watson: An Overview of the DeepQA Project. AI Magazine 31:3 59--79 (2010).
[4]
McCord, M., Murdock, J., Boguraev, B. Deep Parsing in Watson. IBM J. Res. & Dev. Vol. 56 No. 3/4 Paper 3 May/July (2012).
[5]
Mochales, R. and Moens, M-F. Argumentation Mining. Artificial Intelligence and Law 19:1--22 (2011).
[6]
Walker, V. A Default-Logic Paradigm for Legal Fact-Finding. Jurimetrics 47:193--243 (2007).
[7]
Wang, C., Kalyanpur, A., Fan, J., Boguraev, B. K., and Gondek, D. C. Relation extraction and scoring in DeepQA. IBM J. Res. & Dev. Vol. 56 No. 3/4 Paper 9 May/July (2012).

Cited By

View all
  • (2024)Exploring Prompting Approaches in Legal Textual EntailmentThe Review of Socionetwork Strategies10.1007/s12626-023-00154-y18:1(75-100)Online publication date: 23-Jan-2024
  • (2024)Multi-view Hierarchical Graph Neural Network for Argumentation MiningCognitive Computation10.1007/s12559-024-10391-017:1Online publication date: 17-Dec-2024
  • (2023)Argument and Counter-Argument Generation: A Critical SurveyNatural Language Processing and Information Systems10.1007/978-3-031-35320-8_37(500-510)Online publication date: 14-Jun-2023
  • Show More Cited By
  1. Toward constructing evidence-based legal arguments using legal decision documents and machine learning

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICAIL '13: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law
      June 2013
      277 pages
      ISBN:9781450320801
      DOI:10.1145/2514601
      • Conference Chair:
      • Enrico Francesconi,
      • Program Chair:
      • Bart Verheij

      Sponsors

      • ITTIG-CNR: Istituto di Teoria e Tecniche dell'Informazione Giuridica - Consiglio Nazionale delle Ricerche
      • IAAIL: Intl Asso for Artifical Intel & Law

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 10 June 2013

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. DeepQA
      2. IBM Watson
      3. default-logic framework
      4. legal argumentation
      5. presuppositional annotation
      6. text annotation

      Qualifiers

      • Research-article

      Conference

      ICAIL '13
      Sponsor:
      • ITTIG-CNR
      • IAAIL

      Acceptance Rates

      ICAIL '13 Paper Acceptance Rate 17 of 53 submissions, 32%;
      Overall Acceptance Rate 69 of 169 submissions, 41%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)16
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 29 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Exploring Prompting Approaches in Legal Textual EntailmentThe Review of Socionetwork Strategies10.1007/s12626-023-00154-y18:1(75-100)Online publication date: 23-Jan-2024
      • (2024)Multi-view Hierarchical Graph Neural Network for Argumentation MiningCognitive Computation10.1007/s12559-024-10391-017:1Online publication date: 17-Dec-2024
      • (2023)Argument and Counter-Argument Generation: A Critical SurveyNatural Language Processing and Information Systems10.1007/978-3-031-35320-8_37(500-510)Online publication date: 14-Jun-2023
      • (2022)Context Sensitive Verb Similarity Dataset for Legal Information ExtractionData10.3390/data70700877:7(87)Online publication date: 28-Jun-2022
      • (2022)Construction and Evaluation of a High-Quality Corpus for Legal Intelligence Using Semiautomated ApproachesIEEE Transactions on Reliability10.1109/TR.2022.315612671:2(657-673)Online publication date: Jun-2022
      • (2022)From Legal Contracts to Formal Specifications: A Systematic Literature ReviewSN Computer Science10.1007/s42979-022-01228-43:5Online publication date: 21-Jun-2022
      • (2022)The Study of Artificial Intelligence as LawLaw and Artificial Intelligence10.1007/978-94-6265-523-2_24(477-502)Online publication date: 6-Jul-2022
      • (2022)Prosecutor's Supervision over Compliance on Laws on the Implementation of Cargo Transportation by Inland Waterway and Sea TransportInternational Scientific Siberian Transport Forum TransSiberia - 202110.1007/978-3-030-96380-4_114(1044-1052)Online publication date: 19-Mar-2022
      • (2022)The representation of argumentation in scientific papersJournal of the Association for Information Science and Technology10.1002/asi.2459073:6(863-878)Online publication date: 26-Apr-2022
      • (2021)Administrative prejudice in cases of petty theft (the Article 7.27 of the Code of the Russian Federation on Administrative Offenses and the Article 158.1 of the Criminal Code of the Russian Federation): how the big data of judicial acts reflect humanization and quality of justiceЮридические исследования10.25136/2409-7136.2021.9.36521(81-124)Online publication date: Sep-2021
      • Show More Cited By

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media