Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Software rejuvenation scheduling using accelerated life testing

Published: 13 January 2014 Publication History

Abstract

A number of studies have reported the phenomenon of “Software aging”, caused by resource exhaustion and characterized by progressive software performance degradation. In this article, we carry out an experimental study of software aging and rejuvenation for an on-line bookstore application, following the standard configuration of TPC-W benchmark. While real website is used for the bookstore, the clients are emulated. In order to reduce the time to application failures caused by memory leaks, we use the accelerated life testing (ALT) approach. We then select the Weibull time to failure distribution at normal level, to be used in a semi-Markov process, to compute the optimal software rejuvenation trigger interval. Since the validation of optimal rejuvenation trigger interval with emulated browsers will take an inordinate long time, we develop a simulation model to validate the ALT experimental results, and also estimate the steady-state availability to cross-validate the results of the semi-Markov availability model.

References

[1]
Alonso, J., Silva, L., Andrzejak, A., Silva, P., and Torres, J. 2007. High-available grid services through the use of virtualized clustering. In Proceedings of the 8th IEEE/ACM International Conference on Grid Computing. IEEE, 34--41.
[2]
Alonso, J., Torres, J., Berral, J. Ll., and Gavald`a, R. 2010. Adaptive on-line software aging prediction based on machine learning. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE, 507--516.
[3]
Apache. 2011a. The Apache HTTP Server Project. (2011). http://httpd.apache.org.
[4]
Apache. 2011b. Apache tomcat. (2011). http://tomcat.apache.org/.
[5]
Apache. 2011c. Apache tomcat configuration reference - the HTTP connector. (2011). http://tomcat.apache.org/tomcat-6.0-doc/config/http.html.
[6]
Bao, Y., Sun, X., and Trivedi, K. S. 2005. A workload-based analysis of software aging, and rejuvenation. IEEE Trans. Reliab. 54, 3, 541--548.
[7]
Bezenek, T., Cain, T., Dickson, R., Heil, T., Martin, M., McCurdy, C., Rajwar, R., Weglarz, E., Zilles, C., and Lipasti, M. 2011. TPC-W benchmark Java version. http://pharm.ece.wisc.edu/tpcw.shtml.
[8]
Bobbio, A., Sereno, M., and Anglano, C. 2001. Fine grained software degradation models for optimal rejuvenation policies. Perform. Eval. 46, 1, 45--62.
[9]
Cai, K.-Y. 2006. Software reliability experimentation and control. J. Comput. Sci. Tech. 21, 5, 697--707.
[10]
Cassidy, K. J., Gross, K. C., and Malekpour, A. 2002. Advanced pattern recognition for detection of complex software aging phenomena in online transaction processing servers. In Proceedings of the International Conference on Dependable Systems and Networks. IEEE, 478--482.
[11]
Castelli, V., Harper, R. E., Heidelberger, P., Hunter, S. W., Trivedi, K. S., Vaidyanathan, K., and Zeggert, W. P. 2001. Proactive management of software aging. IBM J. Res. Development 45, 2, 311--332.
[12]
Chen, D. and Trivedi, K. S. 2001. Analysis of periodic preventive maintenance with general system failure distribution. In Proceedings of the 2001 Pacific Rim International Symposium on Dependable Computing. IEEE, 103--107.
[13]
Dohi, T., Goseva-Popstojanova, K., and Trivedi, K. S. 2000. Statistical non-parametric algorithms to estimate the optimal software rejuvenation schedule. In Proceedings of the 2000 Pacific Rim International Symposium on Dependable Computing. IEEE, 77--84.
[14]
Garg, S., Puliafito, A., Telek, M., and Trivedi, K. S. 1998a. Analysis of preventive maintenance in transactions based software systems. IEEE Trans. Comput. 47, 1, 96--107.
[15]
Garg, S., van Moorsel, A., Vaidyanathan, K., and Trivedi, K. S. 1998b. A methodology for detection and estimation of software aging. In Proceedings of the 9th International Symposium on Software Reliability Engineering. IEEE, 283--292.
[16]
Grottke, M., Li, L., Vaidyanathan, K., and Trivedi, K. S. 2006. Analysis of software aging in a web server. IEEE Trans. Reliab. 55, 3, 411--420.
[17]
Grottke, M., Matias, R., and Trivedi, K. S. 2008. The fundamentals of software aging. In Proceedings of the 2008 IEEE First International Workshop on Software Aging and Rejuvenation (WoSAR). IEEE, 1--6.
[18]
Grottke, M., Nikora, A. P., and Trivedi, K. S. 2010. An empirical investigation of fault types in space mission system software. In Proceedings of the 2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN). IEEE, 447--456.
[19]
Huang, Y., Kintala, C., Kolettis, N., and Fulton, N. D. 1995. Software rejuvenation: Analysis, module and applications. In Proceedings of the 25th Symposium on Fault Tolerant Computing. IEEE, 381--390.
[20]
Jia, Y.-F., Zhao, L., and Cai, K.-Y. 2008. A nonlinear approach to modeling of software aging in a web server. In Proceedings of the 15th Asia-Pacific Software Engineering Conference. IEEE, 77--84.
[21]
Macêdo, A., Ferreira, T., and Matias, R. 2010. The mechanics of memory-related software aging. In Proceedings of the 2010 IEEE Second International Workshop on Software Aging and Rejuvenation (WoSAR). IEEE, 1--5.
[22]
Marshall, E. 1992. Fatal error: How patriot overlooked a scud. Science (New York, NY) 255, 5050, 1347.
[23]
Matias, R., Barbetta, P. A., Trivedi, K. S., and Filho, P. J. F. 2010a. Accelerated degradation tests applied to software aging experiments. IEEE Trans. Reliab. 59, 1, 102--114.
[24]
Matias, R., Beicker, I., Leitão, B., and Maciel, P. R. M. 2010b. Measuring software aging effects through OS kernel instrumentation. In Proceedings of the 2010 IEEE Second International Workshop on Software Aging and Rejuvenation (WoSAR). IEEE, 1--6.
[25]
Matias, R., Trivedi, K. S., and Maciel, P. R. M. 2010c. Using accelerated life tests to estimate time to software aging failure. In Proceedings of the 2010 IEEE 21st International Symposium on Software Reliability Engineering (ISSRE). IEEE, 211--219.
[26]
Meeker, W. Q. and Escobar, L. A. 1998. Statistical Methods for Reliability Data. Vol. 78. Wiley, New York.
[27]
Nelson, W. B. 2004. Accelerated Testing: Statistical Models, Test Plans and Data Analyses. Wiley-Interscience.
[28]
Oracle. 2010. JSTAT - Java virtual machine statistics monitoring tool. (2010). http://download.oracle.com/javase/1.5.0/docs/tooldocs/share/jstat.html.
[29]
Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall's tau. J. Amer. Statist. Assoc. 63, 324, 1379--1389.
[30]
Silva, L., Madeira, H., and Silva, J. G. 2006. Software aging and rejuvenation in a SOAP-based server. In Proceedings of the 5th IEEE International Symposium on Network Computing and Applications. IEEE, 56--65.
[31]
TPC. 2002. TPC Benchmark#8482; W specification version 1.8. (2002). http://www.tpc.org/tpcw/spec/tpcw_V1.8.pdf.
[32]
Trivedi, K. S. 2002. Probability and statistics with reliability, queuing, and computer science applications (2nd ed.), Wiley, New York.
[33]
Vaidyanathan, K. and Trivedi, K. S. 2005. A comprehensive model for software rejuvenation. IEEE Trans. Depend. Secure Comput. 2, 2, 124--137.
[34]
Zhang, X. and Pham, H. 2002. Predicting operational software availability and its applications to telecommunication systems. Int. J. Syst. Sci. 33, 11, 923--930.
[35]
Zhao, J., Jin, Y., Trivedi, K. S., and Matias, R. 2011. Injecting memory leak to accelerate software failures. In Proceedings of the 2011 IEEE 22st International Symposium on Software Reliability Engineering (ISSRE). IEEE, 260--269.

Cited By

View all
  • (2021)Software Testing Strategies for Detecting Hypercall Handlers' Aging-related Bugs2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)10.1109/ISSREW53611.2021.00043(48-55)Online publication date: Oct-2021
  • (2021)Software Fault ToleranceFault-Tolerant Systems10.1016/B978-0-12-818105-8.00015-2(161-202)Online publication date: 2021
  • (2019)Two-Level Rejuvenation for Android Smartphones and Its OptimizationIEEE Transactions on Reliability10.1109/TR.2018.288130668:2(633-652)Online publication date: Jun-2019
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Journal on Emerging Technologies in Computing Systems
ACM Journal on Emerging Technologies in Computing Systems  Volume 10, Issue 1
Special Issue on Reliability and Device Degradation in Emerging Technologies and Special Issue on WoSAR 2011
January 2014
210 pages
ISSN:1550-4832
EISSN:1550-4840
DOI:10.1145/2543749
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 13 January 2014
Accepted: 01 March 2013
Revised: 01 September 2012
Received: 01 April 2012
Published in JETC Volume 10, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Accelerated life tests
  2. memory leaks
  3. optimal software rejuvenation
  4. semi-markov process
  5. simulation

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Software Testing Strategies for Detecting Hypercall Handlers' Aging-related Bugs2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)10.1109/ISSREW53611.2021.00043(48-55)Online publication date: Oct-2021
  • (2021)Software Fault ToleranceFault-Tolerant Systems10.1016/B978-0-12-818105-8.00015-2(161-202)Online publication date: 2021
  • (2019)Two-Level Rejuvenation for Android Smartphones and Its OptimizationIEEE Transactions on Reliability10.1109/TR.2018.288130668:2(633-652)Online publication date: Jun-2019
  • (2019)Rejuvenation and the Age of Information2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)10.1109/ISSREW.2019.00076(225-231)Online publication date: Oct-2019
  • (2019)Towards Testing the Software Aging Behavior of Hypervisor Hypercall Interfaces2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)10.1109/ISSREW.2019.00075(218-224)Online publication date: Oct-2019
  • (2017)Automatic Mesh Animation Preview With User Voting-Based RefinementIEEE Transactions on Multimedia10.1109/TMM.2016.261212419:2(327-339)Online publication date: 1-Feb-2017
  • (2017)Modeling Real-Life SystemsReliability and Availability Engineering10.1017/9781316163047.025(645-694)Online publication date: 30-Aug-2017
  • (2017)Case StudiesReliability and Availability Engineering10.1017/9781316163047.024(643-644)Online publication date: 30-Aug-2017
  • (2016)ARF-Predictor: Effective Prediction of Aging-Related Failure Using EntropyIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2016.2604381(1-1)Online publication date: 2016
  • (2016)Modeling 3D synthetic view dissimilarityThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-015-1069-z32:4(429-443)Online publication date: 1-Apr-2016
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media