Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2568088.2568102acmconferencesArticle/Chapter ViewAbstractPublication PagesicpeConference Proceedingsconference-collections
research-article
Open access

Understanding, modelling, and improving the performance of web applications in multicore virtualised environments

Published: 22 March 2014 Publication History

Abstract

As the computing industry enters the Cloud era, multicore architectures and virtualisation technologies are replacing traditional IT infrastructures. However, the complex relationship between applications and system resources in multicore virtualised environments is not well understood. Workloads such as web services and on-line financial applications have the requirement of high performance but benchmark analysis suggests that these applications do not optimally benefit from a higher number of cores.
In this paper, we try to understand the scalability behaviour of network/CPU intensive applications running on multicore architectures. We begin by benchmarking the Petstore web application, noting the systematic imbalance that arises with respect to per-core workload. Having identified the reason for this phenomenon, we propose a queueing model which, when appropriately parametrised, reflects the trend in our benchmark results for up to 8 cores. Key to our approach is providing a fine-grained model which incorporates the idiosyncrasies of the operating system and the multiple CPU cores. Analysis of the model suggests a straightforward way to mitigate the observed bottleneck, which can be practically realised by the deployment of multiple virtual NICs within our VM. Next we make blind predictions to forecast performance with multiple virtual NICs. The validation results show that the model is able to predict the expected performance with relative errors ranging between 8 and 26 per cent.

References

[1]
A. Aldhalaan and D. A. Menasc--e. Analytic performance modeling and optimization of live VM migration. Proc. EPEW, pages 28--42, 2013.
[2]
S. Bardhan and D. A. Menasc--e. Analytic performance models of applications in multi-core computer. Proc. MASCOTS, 2013.
[3]
P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualization categories and subject descriptors. Proc. SOSP, 2003.
[4]
M. Bourguiba, K. Haddadou, and G. Pujolle. Packet aggregation based network I/O virtualization for cloud computing. Proc. Computer Communications, pages 309--319, Feb. 2012.
[5]
F. Brosig, F. Gorsler, N. Huber, and S. Kounev. Evaluating approaches for performance prediction in virtualized environments. Proc. MASCOTS, 2013.
[6]
J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web server performance modeling using an M/G/1/K*PS queue. Proc. Telecommunications, 2:1501--1506, 2003.
[7]
D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi. End-to-End performance of multi-core systems in cloud environments. Proc. EPEW, pages 221--235, 2013.
[8]
L. Y. Chen, G. Serazzi, D. Ansaloni, E. Smirni, and W. Binder. What to expect when you are consolidating: effective prediction models of application performance on multicores. Proc. Cluster Computing, May 2013.
[9]
L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O processing in the Xen virtual machine monitor. Proc. USENIX ATEC, pages 387--390, 2005.
[10]
J. D. Deng and M. K. Purvis. Multi-core application performance optimization using a constrained tandem queueing model. Journal of Network and Computer Applications, 34(6):1990--1996, Nov. 2011.
[11]
N. J. Dingle, W. J. Knottenbelt, and T. Suto. PIPE2: A tool for the performance evaluation of generalised stochastic Petri nets. Proc. ACM SIGMETRICS, 2009.
[12]
H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark silicon and the end of multicore scaling. Proc. ISCA, pages 365--376, 2011.
[13]
M. Ferdman, A. Adileh, and O. Kocberber. Clearing the clouds: a study of emerging scale-out workloads on modern hardware. Proc. ASPLOS 2012, pages 1--11, 2012.
[14]
P. Gepner and M. Kowalik. Multi-Core processors: new way to achieve high system performance. Proc. PARELEC, pages 9--13, 2006.
[15]
D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing performance isolation across virtual machines in Xen. Proc. Middleware, 2006.
[16]
V. Gupta, R. Nathuji, and K. Schwan. An analysis of power reduction in datacenters using heterogeneous chip multiprocessors. Proc. ACM SIGMETRICS, pages 87--91, 2011.
[17]
R. Han, L. Guo, M. M. Ghanem, and Y. Guo. Lightweight resource scaling for cloud applications. Proc. CCGrid, pages 644--651, May 2012.
[18]
A. S. Harji, P. A. Buhr, and T. Brecht. Comparing high-performance multi-core web-server architectures. Proc. SYSTOR, pages 1--12, 2012.
[19]
P. G. Harrison. Turning back time in Markovian process algebra. Journal of Theoretical Computer Science, 290:1947--1986, Jan. 2003.
[20]
P. G. Harrison, C. M. Llad--o, and R. Puigjaner. A unified approach to modelling the performance of concurrent systems. Journal of Simulation Modelling Practice and Theory, 17:1445--1456, Oct. 2009.
[21]
R. Hashemian, D. Krishnamurthy, M. Arlitt, and N. Carlsson. Improving the scalability of a multi-core web server. Proc. ACM/SPEC ICPE, pages 161--172, 2013.
[22]
N. Huber, M. V. Quast, M. Hauck, and S. Kounev. Evaluating and modeling virtualization performance overhead for cloud environments. Journal of CLOSER, pages 563--573, 2011.
[23]
W. Iqbal, M. Dailey, and D. Carrera. SLA-driven adaptive resource management for web applications on a heterogeneous compute cloud. Proc. CloudCom, pages 243--253, 2009.
[24]
H. C. Jang and H. W. Jin. MiAMI: Multi-core aware processor afinity for TCP/IP over multiple network interfaces. Proc. HPI, pages 73--82, Aug. 2009.
[25]
N. Khanyile, J. Tapamo, and E. Dube. An analytic model for predicting the performance of distributed applications on multicore clusters. Proc. IAENG, 2012.
[26]
S. Kikuchi and Y. Matsumoto. Performance modeling of concurrent live migration operations in cloud computing systems using PRISM probabilistic model checker. Proc. Cloud Computing, pages 49--56, 2011.
[27]
H. Liu, H. Jin, C. Z. Xu, and X. Liao. Performance and energy modeling for live migration of virtual nmachines. Proc. HPDC, pages 249--264, Dec. 2011.
[28]
D. A. Menasc--e. Virtualization: concept, application, and peformance modeling. Proc. CMG conference, 2005.
[29]
Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner. Predictive performance modeling of virtualized storage systems using optimized statistical regression techniques categories and subject descriptors. Proc. ACM/SPEC ICPE, pages 283--294, 2013.
[30]
Peter G. Harrison, Nareth M. Patel. Performance modeling of communication networks and computer architecture. Addison-Wesley, 1992.
[31]
A. Peternier, W. Binder, A. Yokokawa, and L. Chen. Parallelism profiling and wall-time prediction for multi-threaded applications. Proc. ACM/SPEC ICPE, pages 211--216, 2013.
[32]
R. Prasad, M. Jain, and C. Dovrolis. Effects of interrupt coalescence on network measurements. Passive and active network measurement, pages 247--256, 2004.
[33]
G. Prinslow and R. Jain. Overview of performance measurement and analytical modeling techniques for multi-core processors, 2011. http://www.cse.wustl.edu/~jain/cse567--11/ftp/multcore/.
[34]
X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao. Who is your neighbor: Net I/O performance interference in virtualized clouds. Proc. Services Computing, pages 314--329, 2012.
[35]
A. Rai, R. Bhagwan, and S. Guha. Generalized resource allocation for the cloud. Proc. ACM SoCC, pages 1--12, 2012.
[36]
K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner. Achieving 10 Gb/s using safe and transparent network interface virtualization. Proc. ACM SIGPLAN/SIGOPS VEE, 2009.
[37]
C. Reiss, A. Tumanov, and G. Ganger. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. Proc. SoCC, 2012.
[38]
G. Shanmuganathan, A. Gulati, and P. Varman. Defragmenting the cloud using demand-based resource allocation categories and subject descriptors. Proc. ACM SIGMETRICS, pages 67--80, 2013.
[39]
A. Shari and S. Srikantaiah. Mete: meeting end-to-end qos in multicores through system-wide resource management. Proc. ACM SIGMETRICS, pages 13--24, 2011.
[40]
U. Sharma, P. Shenoy, and D. F. Towsley. Provisioning multi-tier cloud applications using statistical bounds on sojourn time. Proc. ICAC, pages 43--52, 2012.
[41]
S.S.Lam. Queuing Networks with Population Size Contraints. IBM Journal of Research and Development, pages pp 370--378, July, 1977.
[42]
T. Suto, J. Bradley, and W. Knottenbelt. Performance trees: A new approach to quantitative performance specification. Proc. MASCOTS, pages 303--313, 2006.
[43]
B. M. Tudor and Y. M. Teo. On understanding the energy consumption of ARM-based multicore servers. Proc. ACM SIGMETRICS, pages 267--278, 2013.
[44]
A. Tumanov and J. Cipar. alsched: algebraic scheduling of mixed workloads in heterogeneous clouds. Proc. SoCC, 2012.
[45]
B. Veal and A. Foong. Performance scalability of a multi-core web server. Proc. ANCS, pages 57--66, 2007.
[46]
D. Wentzla, K. Modzelewski, and J. Miller. An operating system for multicore and clouds : mechanisms and implementation categories and subject descriptors. Proc. SoCC, 2010.
[47]
W. Wu, M. Crawford, and M. Bowden. The performance analysis of Linux networking - packet receiving. Proc. International Journal of Computer Communications, 2006.
[48]
F. Wuhib, R. Stadler, and H. Lindgren. Dynamic resource allocation with management objectives implementation for an OpenStack cloud. Proc. CNSM, bpages 309--315, 2012.

Cited By

View all
  • (2021)Response Time Distribution in a Tandem Pair of Queues with Batch ProcessingJournal of the ACM10.1145/344897368:4(1-41)Online publication date: 30-Jun-2021
  • (2018)Effective Modeling Approach for IaaS Data Center Performance Analysis under Heterogeneous WorkloadIEEE Transactions on Cloud Computing10.1109/TCC.2016.25601586:4(991-1003)Online publication date: 1-Oct-2018
  • (2017)Open Source In-Memory Data Grid SystemsProceedings of the 8th ACM/SPEC on International Conference on Performance Engineering10.1145/3030207.3053671(163-164)Online publication date: 17-Apr-2017
  • Show More Cited By

Index Terms

  1. Understanding, modelling, and improving the performance of web applications in multicore virtualised environments

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      ICPE '14: Proceedings of the 5th ACM/SPEC international conference on Performance engineering
      March 2014
      310 pages
      ISBN:9781450327336
      DOI:10.1145/2568088
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 March 2014

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. benchmarking
      2. multicore
      3. performance modelling
      4. virtualisation
      5. web applications

      Qualifiers

      • Research-article

      Conference

      ICPE'14
      Sponsor:

      Acceptance Rates

      ICPE '14 Paper Acceptance Rate 21 of 78 submissions, 27%;
      Overall Acceptance Rate 252 of 851 submissions, 30%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)53
      • Downloads (Last 6 weeks)9
      Reflects downloads up to 10 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)Response Time Distribution in a Tandem Pair of Queues with Batch ProcessingJournal of the ACM10.1145/344897368:4(1-41)Online publication date: 30-Jun-2021
      • (2018)Effective Modeling Approach for IaaS Data Center Performance Analysis under Heterogeneous WorkloadIEEE Transactions on Cloud Computing10.1109/TCC.2016.25601586:4(991-1003)Online publication date: 1-Oct-2018
      • (2017)Open Source In-Memory Data Grid SystemsProceedings of the 8th ACM/SPEC on International Conference on Performance Engineering10.1145/3030207.3053671(163-164)Online publication date: 17-Apr-2017
      • (2017)Benchmarking and Performance Analysis for Distributed Cache Systems: A Comparative Case StudyPerformance Evaluation and Benchmarking for the Analytics Era10.1007/978-3-319-72401-0_11(147-163)Online publication date: 30-Dec-2017
      • (2017)Performance Modeling Using Queueing Petri NetsComputer Networks10.1007/978-3-319-59767-6_26(321-335)Online publication date: 30-May-2017
      • (2016)Mitigating performance unpredictability in the IaaS using the Kyoto principleProceedings of the 17th International Middleware Conference10.1145/2988336.2988342(1-10)Online publication date: 28-Nov-2016
      • (2015)KyotoProceedings of the International workshop on Virtualization Technologies10.1145/2835075.2835077(1-6)Online publication date: 7-Dec-2015
      • (2015)Automating performance bottleneck detection using search-based application profilingProceedings of the 2015 International Symposium on Software Testing and Analysis10.1145/2771783.2771816(270-281)Online publication date: 13-Jul-2015
      • (2015)A Performance Tree-based Monitoring Platform for CloudsProceedings of the 6th ACM/SPEC International Conference on Performance Engineering10.1145/2668930.2688063(97-98)Online publication date: 28-Jan-2015
      • (2015)CloudScopeProceedings of the 2015 IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems10.1109/MASCOTS.2015.35(164-173)Online publication date: 5-Oct-2015
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media