Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2578726.2578787acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicmrConference Proceedingsconference-collections
tutorial

Infrequent concept pairs detection in multimedia documents

Published: 01 April 2014 Publication History

Abstract

Single visual concept detection in videos is a hard task, especially for infrequent concepts or for those difficult to model. This question becomes even more difficult in the case of concept pairs. Two main directions may tackle this problem: 1) combine the predictions of their corresponding detectors in a way which is similar to usual information retrieval, or 2) build supervised learners for these pairs of concepts by generating annotations based on the occurrences of the two individual concepts. Each of these approaches have advantages and drawbacks. We evaluated them in the context of the concept pair detection subtask of the TRECVid 2013 semantic indexing (SIN) task and found that information retrieval-like fusions of concept detection scores outperforms the learning approaches. The described methods outperform the best official result of the evaluation campaign cited previously, by 9% in terms of relative improvement on MAP.

References

[1]
R. Aly, D. Hiemstra, A. de Vries, and F. de Jong. A probabilistic ranking framework using unobservable binary events for video search. In 7th ACM International Conference on Content-based Image and Video Retrieval, CIVR 2008, pages 349--358, New York, NY, USA, July 2008. ACM.
[2]
S. Ayache and G. Quénot. Video corpus annotation using active learning. In Proceedings of the IR research, ECIR'08, pages 187--198, Berlin, Heidelberg, 2008. Springer-Verlag.
[3]
N. Ballas, B. Labbé, A. Shabou, H. Le Borgne, P. Gosselin, M. Redi, B. Merialdo, H. Jégou, J. Delhumeau, R. Vieux, B. Mansencal, J. Benois-Pineau, S. Ayache, A. Hamadi, B. Safadi, F. Thollard, N. Derbas, G. Quénot, H. Bredin, M. Cord, B. Gao, C. Zhu, Y. tang, E. Dellandrea, C.-E. Bichot, L. Chen, A. BenoÃőt, P. Lambert, T. Strat, J. Razik, S. Paris, H. Glotin, T. Ngoc Trung, D. Petrovska Delacrétaz, G. Chollet, A. Stoian, and M. Crucianu. IRIM at TRECVID 2012: Semantic Indexing and Instance Search. In Proc. TRECVID Workshop, Gaithersburg, MD, USA, 2012.
[4]
S.-F. Chang, W. Hsu, W. Jiang, L. Kennedy, D. Xu, A. Yanagawa, and E. Zavesky. Columbia university trecvid-2006 video search and high-level feature extraction. in proc. trecvid workshop. In In Proc. TRECVID Workshop, 2006.
[5]
X. Li, C. G. M. Snoek, M. Worring, and A. Smeulders. Harvesting social images for bi-concept search. Multimedia, IEEE Transactions on, 14(4):1091--1104, 2012.
[6]
X. Li, D. Wang, J. Li, and B. Zhang. Video search in concept subspace: A text-like paradigm. In Proc. of CIVR, 2007.
[7]
J. Platt. Probabilistic outputs for support vector machines and comparison to regularize likelihood methods. In A. Smola, P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61--74, 2000.
[8]
B. Safadi and G. Quénot. Evaluations of multi-learner approaches for concept indexing in video documents. In RIAO, pages 88--91, 2010.
[9]
G. Salton, E. A. Fox, and H. Wu. Extended boolean information retrieval. Commun. ACM, 26(11):1022--1036, Nov. 1983.
[10]
A. F. Smeaton. Independence of contributing retrieval strategies in data fusion for effective information retrieval. In Proceedings of the 20th Annual BCS-IRSG conference on Information Retrieval Research, IRSG'98, pages 12--12, Swinton, UK, UK, 1998. British Computer Society.
[11]
C. G. Snoek, B. Huurnink, L. Hollink, M. de Rijke, G. Schreiber, and M. Worring. Adding semantics to detectors for video retrieval. Trans. Multi., 9(5):975--986, Aug. 2007.
[12]
G. Wang and D. A. Forsyth. Joint learning of visual attributes, object classes and visual saliency. In ICCV'09, pages 537--544, 2009.
[13]
X.-Y. Wei, Y.-G. Jiang, and C.-W. Ngo. Concept-driven multi-modality fusion for video search. Circuits and Systems for Video Technology, IEEE Transactions on, 21(1):62--73, 2011.
[14]
R. Yan and A. G. Hauptmann. The combination limit in multimedia retrieval. In In Proceedings of the eleventh ACM international conference on Multimedia, pages 339--342, 2003.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICMR '14: Proceedings of International Conference on Multimedia Retrieval
April 2014
564 pages
ISBN:9781450327824
DOI:10.1145/2578726
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 April 2014

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Fusion
  2. Multimedia
  3. Semantic Indexing
  4. TRECVid
  5. concept pairs

Qualifiers

  • Tutorial
  • Research
  • Refereed limited

Conference

ICMR '14
ICMR '14: International Conference on Multimedia Retrieval
April 1 - 4, 2014
Glasgow, United Kingdom

Acceptance Rates

ICMR '14 Paper Acceptance Rate 21 of 111 submissions, 19%;
Overall Acceptance Rate 254 of 830 submissions, 31%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 46
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media