Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Algorithm 946: ReLIADiff—A C++ Software Package for Real Laplace Transform Inversion based on Algorithmic Differentiation

Published: 08 July 2014 Publication History

Abstract

Algorithm 662 of the ACM TOMS library is a software package, based on the Weeks method, which is used for calculating function values of the inverse Laplace transform. The software requires transform values at arbitrary points in the complex plane. We developed a software package, called ReLIADiff, which is a modification of Algorithm 662 using transform values at arbitrary points on real axis. ReLIADiff, implemented in C++, relies on TADIFF software package designed for Algorithmic Differentiation. In this article, we present ReLIADiff focusing on its design principles, performance, and use.

Supplementary Material

ZIP File (946.zip)
Software for ReLIADiff - A C++ Software Package for Real Laplace Transform Inversion based on Algorithmic Differentiation
a31-damore-apndx.pdf (damore.zip)
Supplemental movie, appendix, image and software files for, Algorithm 946: ReLIADiff—A C++ Software Package for Real Laplace Transform Inversion based on Algorithmic Differentiation

References

[1]
J. Abate and P. Valko. 2002. Uniform Resource Locators (URL). Wolfram Information Center. http://library. wolfram.com/infocenter/MathSource/4738/.
[2]
J. Abate and W. Whitt. 1996. On the Laguerre method for numerically inverting Laplace transforms. J. Comput. 8, 4, 413--427.
[3]
R. S. Anderssen and F. R. de Hoog. 1984. Finite difference methods for the numerical differentiation of non-exact data. Computing 33, 259--267.
[4]
R. Bellman, R. Kalaba, and J. A. Lockett. 1966. Numerical inversion of the Laplace transform: Applications to biology, economics, engineering, and physics. Elsevier.
[5]
C. Bendtsen and O. Stauning. 1997. TADIFF, A flexible C++ package for automatic differentiation using Taylor series expansion. http://citeseer.ist.psu.edu/bendtsen97tadiff.html.
[6]
R. Campagna, L. D'Amore, and A. Murli. 2007. An efficient algorithm for regularization of Laplace transform inversion in real case. J. Computat. Appl. Math. 210, 84--98.
[7]
A. M. Cohen. 2007. Numerical Methods for Laplace Transform Inversion. Springer.
[8]
J. Cullum. 1971. Numerical differentiation and regularization. SIAM J. Numer. Anal. 8, 254--265.
[9]
S. Cuomo, L. D'Amore, A. Murli, and M. Rizzardi. 2007. Computation of the inverse Laplace transform based on a collocation method which uses only real values. J. Computat. Appl. Math. 198, 98--115.
[10]
S. Cuomo, L. D'Amore, A. Murli, and M. Rizzardi. 2008. A modification of Weeks' method for numerical inversion of the Laplace transform in the real case based on automatic differentiation. In Advances in Automatic Differentiation, Christian H. Bischof, H. Martin Bücker, Paul D. Hovland, Uwe Naumann, and J. Utke, Eds., (Springer). 45--54.
[11]
L. D'Amore and A. Murli. 2002. Regularization of a Fourier series based method for real inversion of Laplace transform. Inverse Prob. 18, 1185--1205.
[12]
L. D'Amore, R. Campagna, A. Galletti, L. Marcellino, and A. Murli. 2012. A smoothing spline that approximates Laplace transform functions only known on measurements on the real axis. Inver. Prob. 28.
[13]
L. D'Amore, R. Campagna, V. Mele, and A. Murli. 2013a. ReLaTIve. An ANSI C90 software package for the real Laplace transform inversion. Numer. Algor. 63, 187--211.
[14]
L. D'Amore, G. Laccetti, and A. Murli. 1999a. An implementation of a Fourier series method for the numerical inversion of the Laplace transform. ACM Trans. Math. Soft. 25, 279--305.
[15]
L. D'Amore, G. Laccetti, and A. Murli. 1999b. Algorithm 796: A Fortran software package for the numerical inversion of the Laplace transform based on a Fourier series method. ACM Trans. Math. Soft. 25, 306--315.
[16]
L. D'Amore, V. Mele, and A. Murli. 2013b. Performance analysis of the Taylor expansion coefficients computation as implemented by the software package TADIFF. J. Numer. Anal. Indust. Appl. Math. 8, 1--2, 1--12.
[17]
B. Davies and D. Martin. 1979. Numerical inversion of Laplace transform. A survey and comparison of methods. J. Comput. Phys. 33, 1--32.
[18]
D. G. Duffy. 1993. On the numerical inversion of Laplace transforms: Comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19, 3, 333--359.
[19]
W. Fair. Jr. 2008. Numerical Laplace transforms and inverse transforms in C#, http://www.codeproject.com/KB/recipes/LaplaceTransforms.aspx?msg=3150794.
[20]
P. F. Faure and S. Rodts. 2008. Proton NMR relaxation as a probe for setting cement pastes. Magn. Reson. Imaging 26, 8, 1183--1196.
[21]
S. Garbow, G. Giunta, N. J. Lyness, and A. Murli. 1988. Algorithm 662: A Fortran software package for the numerical inversion of a Laplace transform based on Week's method. ACM Trans. Math. Softw. 54, 163--170.
[22]
G. Giunta, G. Laccetti, and M. Rizzardi. 1988. More on Weeks method for the numerical inversion of the Laplace trasform. Numer. Mat. 193, 193--200.
[23]
G. Giunta and A. Murli. 1989. An algorithm for inverting the Laplace transform using real and real sampled function values. In Proceedings of the IMACS Symposium on Numerical and Applied Mathematics, C. Brezinski, Ed., 589--592.
[24]
G. Giunta, A. Murli, and G. Schmid. 1995. Error analysis of Rjabov algorithm for inverting Laplace transforms. Ricerche Matemat. 44, 1, 207--219.
[25]
A. Griewank and K. Kulshreshtha. 2012. On the numerical stability of algorithmic differentiation. Computing 94, 125--149.
[26]
C. W. Groetsch. 1990. The theory of Tikhonov regularization for Fredholm equations of the first kind. Research Notes in Mathematics, Pitman Advanced Publishing Program.
[27]
M. Hanke and O. Scherzer. 2001. Inverse problems light: Numerical differentiation. Amer. Math. Monthly 108, 6, 512--521.
[28]
P. Henrici. 1966. Elements of Numerical Analysis. Wiley.
[29]
N. Higham. 1996. Accuracy and Stability of Numerical Algorithms. SIAM.
[30]
V. V. Kryzhniy. 2004. On regularization of numerical inversion of Laplace transforms J. Inverse Ill-Posed Prob. 12, 3, 279--296.
[31]
Y. Y. Lin, N. H. Ge, and L. P. Hwang. 1993. Multiexponential analysis of relaxation decays based on linear, prediction and singular-value decomposition. J. Magn. Reson. A 105, 6571.
[32]
B. Magyari, I. Ioan, and P. P. Valko. 2010. Stokes first problem for micropolar fluids. Fluid Dynam. Res. 42, 1--15.
[33]
W. Magnus, F. Oberhettinger, and R. P. Soni. 1966. Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, New York.
[34]
C. Montella, R. Michel, and J. P. Diard. 2007. Numerical inversion of Laplace transforms.: A useful tool for evaluation of chemical diffusion coefficients in ion-insertion electrodes investigated by Pitt. J. Electroanal. Chem. 608, 1, 15, 37--46.
[35]
A. Murli, S. Cuomo, L. D'Amore, and A. Galletti. 2007. Numerical regularization of a real inversion formula based on the Laplace transform's eigenfunction expansion of the inverse function. Inv. Prob. 23, 713--731.
[36]
R. Piessens. 1972. A new numerical method for the inversion of the Laplace transform. J. Inst. Math. Appl. 10, 185--192.
[37]
R. Piessens. 1982. Algorithm 113: Inversion of the Laplace transform. Computer J. (Algor. Supplement) 25, 2, 278--282.
[38]
A. G. Ramm and A. B. Smirnova. 2001. On stable numerical differentiation. Math. Computat. 70, 235, 1131--1153.
[39]
H. Stehfest. 1970. Algorithm 368: Numerical inversion of Laplace transform Commun. ACM 13, 47--49.
[40]
G. Szego. 1939. Orthogonal polynomials. In American Mathematical Society Colloquium Publications, Vol. XXIII.
[41]
P. Valko and S. Vaida. 2002. Inversion of noise-free Laplace transforms: Towards a standardized set of test problems. Inverse Problems Eng. 10, 467--483.
[42]
L. Van Der Meerd, S. M. Melnikov, F. J. Vergeldt, E. G. Novikov, and H. Van As. 2002. Modelling of self-diffusion and relaxation time NMR in multicompartment systems with cylindrical geometry. J. Magn. Reson. 156, 2, 213--221.
[43]
W. Weeks. 1966. Numerical inversion of the Laplace transform using Laguerre functions. J. ACM 13, 419--429.
[44]
J. Weidemann. 1999. Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21, 1, 118--128.
[45]
X. Zhao. 2004. An efficient approach for the numerical inversion of Laplace transform and its application in dynamic fracture analysis of a piezoelectric laminate. Int. J. Solids Structures 41, 13, 3653--3674.

Cited By

View all
  • (2023)Algorithm and Software Overhead: A Theoretical Approach to Performance PortabilityParallel Processing and Applied Mathematics10.1007/978-3-031-30445-3_8(89-100)Online publication date: 27-Apr-2023
  • (2022)Numerical simulation of time partial fractional diffusion model by Laplace transformAIMS Mathematics10.3934/math.20221597:2(2878-2890)Online publication date: 2022
  • (2020)Ab-initio Functional Decomposition of Kalman Filter: A Feasibility Analysis on Constrained Least Squares ProblemsParallel Processing and Applied Mathematics10.1007/978-3-030-43222-5_7(75-92)Online publication date: 19-Mar-2020
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Mathematical Software
ACM Transactions on Mathematical Software  Volume 40, Issue 4
June 2014
154 pages
ISSN:0098-3500
EISSN:1557-7295
DOI:10.1145/2639949
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 July 2014
Accepted: 01 November 2013
Revised: 01 July 2013
Received: 01 October 2012
Published in TOMS Volume 40, Issue 4

Permissions

Request permissions for this article.

Check for updates

Badges

Author Tags

  1. Algorithmic differentiation
  2. Laplace transform inversion
  3. Weeks method
  4. inverse and ill-posed problems

Qualifiers

  • Research-article
  • Research
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)7
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Algorithm and Software Overhead: A Theoretical Approach to Performance PortabilityParallel Processing and Applied Mathematics10.1007/978-3-031-30445-3_8(89-100)Online publication date: 27-Apr-2023
  • (2022)Numerical simulation of time partial fractional diffusion model by Laplace transformAIMS Mathematics10.3934/math.20221597:2(2878-2890)Online publication date: 2022
  • (2020)Ab-initio Functional Decomposition of Kalman Filter: A Feasibility Analysis on Constrained Least Squares ProblemsParallel Processing and Applied Mathematics10.1007/978-3-030-43222-5_7(75-92)Online publication date: 19-Mar-2020
  • (2020)Vessel to shore data movement through the Internet of Floating Things: A microservice platform at the edgeConcurrency and Computation: Practice and Experience10.1002/cpe.598833:4Online publication date: 7-Sep-2020
  • (2017)Quality assurance of Gaver’s formula for multi-precision Laplace transform inversion in real caseInverse Problems in Science and Engineering10.1080/17415977.2017.132296326:4(553-580)Online publication date: 8-May-2017

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media