Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2623330.2623706acmconferencesArticle/Chapter ViewAbstractPublication PageskddConference Proceedingsconference-collections
research-article

Heat kernel based community detection

Published: 24 August 2014 Publication History
  • Get Citation Alerts
  • Abstract

    The heat kernel is a type of graph diffusion that, like the much-used personalized PageRank diffusion, is useful in identifying a community nearby a starting seed node. We present the first deterministic, local algorithm to compute this diffusion and use that algorithm to study the communities that it produces. Our algorithm is formally a relaxation method for solving a linear system to estimate the matrix exponential in a degree-weighted norm. We prove that this algorithm stays localized in a large graph and has a worst-case constant runtime that depends only on the parameters of the diffusion, not the size of the graph. On large graphs, our experiments indicate that the communities produced by this method have better conductance than those produced by PageRank, although they take slightly longer to compute. On a real-world community identification task, the heat kernel communities perform better than those from the PageRank diffusion.

    Supplementary Material

    MP4 File (p1386-sidebyside.mp4)

    References

    [1]
    B. Abrahao, S. Soundarajan, J. Hopcroft, and R. Kleinberg. On the separability of structural classes of communities. In KDD, pages 624--632, 2012.
    [2]
    A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential, with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488--511, March 2011.
    [3]
    R. Alberich, J. Miro-Julia, and F. Rossello. Marvel universe looks almost like a real social network. arXiv, cond-mat.dis-nn:0202174, 2002.
    [4]
    N. Alon and V. D. Milman. 1, isoperimetric inequalities for graphs, and superconcentrators. J. of Comb. Theory, Series B, 38(1):73--88, 1985.
    [5]
    R. Andersen, F. Chung, and K. Lang. Local graph partitioning using PageRank vectors. In FOCS, 2006.
    [6]
    R. Andersen and K. Lang. An algorithm for improving graph partitions. In SODA, pages 651--660, January 2008.
    [7]
    K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte carlo methods in pagerank computation: When one iteration is sufficient. SIAM J. Numer. Anal., 45(2):890--904, February 2007.
    [8]
    B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank on MapReduce. In SIGMOD, pages 973--984, New York, NY, USA, 2011. ACM.
    [9]
    B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental and personalized pagerank. Proc. VLDB Endow., 4(3):173--184, Dec. 2010.
    [10]
    M. Boguñá, R. Pastor-Satorras, A. Díáz-Guilera, and A. Arenas. Models of social networks based on social distance attachment. Phys. Rev. E, 70(5):056122, Nov 2004.
    [11]
    P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multiresolution coordinate-free ordering for compressing social networks. In WWW, pages 587--596, March 2011.
    [12]
    F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. Lakshmanan. Fast matrix computations for pairwise and columnwise commute times and Katz scores. Internet Mathematics, 8(1--2):73--112, 2012.
    [13]
    C. Borgs, M. Brautbar, J. Chayes, and S.-H. Teng. Multi-scale matrix sampling and sublinear-time pagerank computation. Internet Mathematics, Online, 2013.
    [14]
    F. Chung. The heat kernel as the PageRank of a graph. PNAS, 104(50):19735--19740, 2007.
    [15]
    F. Chung. A local graph partitioning algorithm using heat kernel pagerank. Internet Mathematics, 6(3):315--330, 2009.
    [16]
    F. Chung and O. Simpson. Solving linear systems with boundary conditions using heat kernel pagerank. In Algorithms and Models for the Web Graph, pages 203--219. Springer, 2013.
    [17]
    I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors a multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell., 29(11):1944--1957, November 2007.
    [18]
    E. Estrada. Characterization of 3d molecular structure. Chemical Physics Letters, 319(5--6):713--718, 2000.
    [19]
    E. Estrada and D. J. Higham. Network properties revealed through matrix functions. SIAM Review, 52(4):696--714, 2010.
    [20]
    A. Farahat, T. LoFaro, J. C. Miller, G. Rae, and L. A. Ward. Authority rankings from HITS, PageRank, and SALSA: Existence, uniqueness, and effect of initialization. SIAM Journal on Scientific Computing, 27(4):1181--1201, 2006.
    [21]
    M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(98):298--305, 1973.
    [22]
    N. J. Higham. Functions of Matrices: Theory and Computation. SIAM, 2008.
    [23]
    G. Jeh and J. Widom. Scaling personalized web search. In WWW, pages 271--279. ACM, 2003.
    [24]
    U. Kang and C. Faloutsos. Beyond 'caveman communities': Hubs and spokes for graph compression and mining. In ICDM, pages 300--309, Washington, DC, USA, 2011. IEEE Computer Society.
    [25]
    L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18(1):39--43, March 1953.
    [26]
    K. Kloster and D. F. Gleich. A fast relaxation method for computing a column of the matrix exponential of stochastic matrices from large, sparse networks. arXiv, cs.SI:1310.3423, 2013.
    [27]
    K. Kloster and D. F. Gleich. A nearly-sublinear method for approximating a column of the matrix exponential for matrices from large, sparse networks. In Algorithms and Models for the Web Graph, page in press, 2013.
    [28]
    R. I. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete input spaces. In ICML, pages 315--322, San Francisco, CA, USA, 2002. Morgan Kaufmann Publishers Inc.
    [29]
    J. Kunegis and A. Lommatzsch. Learning spectral graph transformations for link prediction. In ICML, pages 561--568, 2009.
    [30]
    H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a news media? In WWW, pages 591--600, 2010.
    [31]
    J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In CHI, pages 1361--1370, 2010.
    [32]
    J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1:1--41, March 2007.
    [33]
    J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29--123, September 2009.
    [34]
    M. Liou. A novel method of evaluating transient response. Proceedings of the IEEE, 54(1):20--23, 1966.
    [35]
    Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex differentiable minimization. J. Optim. Theory App., 72(1):7--35, 1992. 10.1007/BF00939948.
    [36]
    F. McSherry. A uniform approach to accelerated PageRank computation. In WWW, pages 575--582, 2005.
    [37]
    B. V. Minchev and W. M. Wright. A review of exponential integrators for first order semi-linear problems. Technical Report Numerics 2/2005, Norges Teknisk-Naturvitenskapelige Universitet, 2005.
    [38]
    A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis of online social networks. In SIGCOMM, pages 29--42, 2007.
    [39]
    C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix. SIAM Review, 20(4):801--836, 1978.
    [40]
    C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review, 45(1):3--49, 2003.
    [41]
    M. Newman. Network datasets. http://www-personal.umich.edu/ mejn/netdata/, 2006.
    [42]
    M. E. J. Newman. The structure of scientific collaboration networks. PNAS, 98(2):404--409, 2001.
    [43]
    M. E. J. Newman. Modularity and community structure in networks. PNAS, 103(23):8577--8582, 2006.
    [44]
    L. Orecchia and M. W. Mahoney. Implementing regularization implicitly via approximate eigenvector computation. In ICML, pages 121--128, 2011.
    [45]
    L. Orecchia, S. Sachdeva, and N. K. Vishnoi. Approximating the exponential, the Lanczos method and an Otilde(m)-time spectral algorithm for balanced separator. In STOC, pages 1141--1160, 2012.
    [46]
    L. Orecchia and Z. A. Zhu. Flow-based algorithms for local graph clustering. In SODA, pages 1267--1286, 2014.
    [47]
    S. E. Schaefer. Graph clustering. Computer Science Review, 1(1):27--64, 2007.
    [48]
    D. L. Shepelyansky and O. V. Zhirov. Google matrix, dynamical attractors, and ulam networks. Phys. Rev. E, 81(3):036213, March 2010.
    [49]
    X. Sui, T.-H. Lee, J. J. Whang, B. Savas, S. Jain, K. Pingali, and I. Dhillon. Parallel clustered low-rank approximation of graphs and its application to link prediction. In Languages and Compilers for Parallel Computing, volume 7760 of Lecture Notes in Computer Science, pages 76--95. Springer Berlin, 2013.
    [50]
    C. (The Cooperative Association for Internet Data Analyais). Network datasets. http://www.caida.org/tools/measurement/skitter/router_topology/, 2005. Accessed in 2005.
    [51]
    W. Y. Wang, K. Mazaitis, and W. W. Cohen. Programming with personalized pagerank: A locally groundable first-order probabilistic logic. In CIKM, pages 2129--2138, New York, NY, USA, 2013. ACM.
    [52]
    J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping community detection using seed set expansion. In CIKM, pages 2099--2108, New York, NY, USA, 2013. ACM.
    [53]
    J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth. In ICDM, pages 745--754, 2012.
    [54]
    Z. A. Zhu, S. Lattanzi, and V. Mirrokni. A local algorithm for finding well

    Cited By

    View all
    • (2024)Community Detection on Social Networks With Sentimental InteractionInternational Journal on Semantic Web and Information Systems10.4018/IJSWIS.34123220:1(1-23)Online publication date: 27-Mar-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    KDD '14: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining
    August 2014
    2028 pages
    ISBN:9781450329569
    DOI:10.1145/2623330
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 24 August 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. heat kernel
    2. local clustering

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    KDD '14
    Sponsor:

    Acceptance Rates

    KDD '14 Paper Acceptance Rate 151 of 1,036 submissions, 15%;
    Overall Acceptance Rate 1,133 of 8,635 submissions, 13%

    Upcoming Conference

    KDD '24

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)70
    • Downloads (Last 6 weeks)7

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Community Detection on Social Networks With Sentimental InteractionInternational Journal on Semantic Web and Information Systems10.4018/IJSWIS.34123220:1(1-23)Online publication date: 27-Mar-2024
    • (2024)Local Community Detection in Multiple Private NetworksACM Transactions on Knowledge Discovery from Data10.1145/364407818:5(1-21)Online publication date: 10-Feb-2024
    • (2024)Densest Subhypergraph: Negative Supermodular Functions and Strongly Localized MethodsProceedings of the ACM on Web Conference 202410.1145/3589334.3645624(881-892)Online publication date: 13-May-2024
    • (2024)Centroid-Based Multiple Local Community DetectionIEEE Transactions on Computational Social Systems10.1109/TCSS.2022.322617811:1(455-464)Online publication date: Feb-2024
    • (2024)Streaming Local Community Detection Through Approximate ConductanceIEEE Transactions on Big Data10.1109/TBDATA.2023.331025110:1(12-22)Online publication date: Feb-2024
    • (2024)A Generalized Heat Kernel Smoothing Filter for Signal Denoising over Graph2024 IEEE International Symposium on Circuits and Systems (ISCAS)10.1109/ISCAS58744.2024.10558098(1-5)Online publication date: 19-May-2024
    • (2024)Overlapping Community Detection Based on Weak EquiconceptIEEE Access10.1109/ACCESS.2024.337488212(42147-42162)Online publication date: 2024
    • (2024)AGCL: Adaptive Graph Contrastive Learning for graph representation learningNeurocomputing10.1016/j.neucom.2023.127019566(127019)Online publication date: Jan-2024
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media