Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2661829.2661912acmconferencesArticle/Chapter ViewAbstractPublication PagescikmConference Proceedingsconference-collections
research-article

Supporting Complex Search Tasks

Published: 03 November 2014 Publication History
  • Get Citation Alerts
  • Abstract

    We present methods to automatically identify and recommend sub-tasks to help people explore and accomplish complex search tasks. Although Web searchers often exhibit directed search behaviors such as navigating to a particular Website or locating a particular item of information, many search scenarios involve more complex tasks such as learning about a new topic or planning a vacation. These tasks often involve multiple search queries and can span multiple sessions. Current search systems do not provide adequate support for tackling these tasks. Instead, they place most of the burden on the searcher for discovering which aspects of the task they should explore. Particularly challenging is the case when a searcher lacks the task knowledge necessary to decide which step to tackle next. In this paper, we propose methods to automatically mine search logs for tasks and build an association graph connecting multiple tasks together. We then leverage the task graph to assist new searchers in exploring new search topics or tackling multi-step search tasks. We demonstrate through experiments with human participants that we can discover related and interesting tasks to assist with complex search scenarios.

    References

    [1]
    Agichtein, E. and Zheng, Z. (2006). Identifying "best bet" web search results by mining past user behavior. Proc. KDD, 902--908.
    [2]
    André, P., Teevan, J., and Dumais, S. (2009). From x-rays to silly putty via Uranus: Serendipity and its role in Web search. Proc. SIGCHI, 2033--2036.
    [3]
    Baeza-Yates, R., Hurtado, C., and Mendoza, M. (2004). Query recommendation using query logs in search engines. Proc. EDBT, 588--596.
    [4]
    Bergsma, S. and Wang, I. (2007). Learning noun phrase query segmentation. Proc. EMNLP, 816--826.
    [5]
    Bilenko, M. and White, R.W. (2008). Mining the search trails of surfing crowds: Identifying relevant websites from user activity. Proc. WWW, 51--60.
    [6]
    Boldi, P., Bonchi, F., Castillo, C., Donato, D., and Vigna, S. (2009). Query suggestions using query-flow graphs. Proc. WSCD, 56--63.
    [7]
    Bonchi, F., Perego, R., Silvestri, F., Vahabi, H., and Venturini, R. (2012). Efficient query recommendations in the long tail via center-piece subgraphs. Proc. SIGIR, 345--354.
    [8]
    Bordino, I., Mejova, Y., and Lalmas, M. (2013). Penguins in sweaters, or serendipitous entity search on user-generated content. Proc. CIKM, 109--118.
    [9]
    Bordino, I., Francisci Morales, G. D., Weber, I., and Bonchi, F. (2013). From machu_picchu to "rafting the urubamba river": Anticipating information needs via the entity-query graph. Proc. WSDM, 275--284.
    [10]
    Bouma, G. (2009). Normalized (pointwise) mutual information in collocation extraction. Proc. GSCL, 31--40.
    [11]
    Broder, A. (2002). A taxonomy of web search. SIGIR Forum, 36(2), 3--10.
    [12]
    Bron, M., Gorp, J., Vishneuski, A., Nack, F., Leeuw, S., and De Rijke, M. (2012). A subjunctive exploratory search interface to support media studies researchers. Proc. SIGIR, 425--434.
    [13]
    Cao, H., Jiang, D., Pei, I., Chen, E., and Li, H. (2009) Towards context-aware search by learning a very large variable length hidden Markov model from search logs. Proc. WWW, 191--200.
    [14]
    Carbonell, J. and Goldstein, J. (1998). The use of MMR, diversity-based reranking for reordering documents and producing summaries. Proc. SIGIR, 335--336.
    [15]
    Chalmers, M., Rodden, K., and Brodbeck, D. (1998). The order of things: Activity-centered information access. Proc. WWW, 359--367.
    [16]
    Craswell, N. and Szummer. M. (2007). Random walks on the click graph. Proc. SIGIR, 239--246.
    [17]
    Czech, Z. J., Havas, G., and Majewski, B. S. (1992). An optimal algorithm for generating minimal perfect hash functions. Information Processing Letters, 43(5): 257--264.
    [18]
    Donato, D., Bonchi, F., Chi, T., and Maarek, Y. (2010). Do you want to take notes? Identifying research missions in Yahoo! Search Pad. Proc. WWW, 321--330.
    [19]
    Dou, Z., Song, R., and Wen, J.R. (2007). A large-scale evaluation and analysis of personalized search strategies. Proc. WWW, 581--590.
    [20]
    Friedman, J. H., Hastie, T., and Tibshirani, R. (1998). Additive Logistic Regression: A Statistical View of Boosting. Technical Report, Stanford University.
    [21]
    Hagen, M., Potthast, M., Stein, B., and Brautigam, C. (2010). Query segmentation revisited. Proc. WWW, 97--106.
    [22]
    Hassan, A. (2013). Identifying web search query reformulation using concept based matching. Proc. EMNLP, 1000--1010.
    [23]
    Hassan, A. and White, R. W. (2012). Task tours: Helping users tackle complex search tasks. Proc. CIKM, 1885--1889.
    [24]
    Hassan, A., White, R. W., Dumais, S., and Wang, Y. (2014). Exploring or struggling? Disambiguating long search sessions. Proc. WSDM, 53--62.
    [25]
    Jeh, G. and Widom, J. (2003). Scaling personalized web search. Proc. WWW, 269--273.
    [26]
    Joachims, T., Freitag, D., and Mitchell, T. (1997). WebWatcher: A tour guide for the World Wide Web. Proc. IJCAI, 770--775.
    [27]
    Jones, R. and Klinkner, K. L. (2008). Beyond the session timeout: Automatic hierarchical segmentation of search topics in query logs. Proc. CIKM, 699--708.
    [28]
    Jones, R., Rey, B., Madani, O., and Greiner, W. (200). Generating query substitutions. Proc. WWW, 387--396.
    [29]
    Lin, T., Pantel, P., Gamon, M., Kannan, A., and Fuxman, A. (2012). Active objects: Actions for entity-centric search. Proc. WWW, 589--598.
    [30]
    Liu, J. and Belkin, N. J. (2010). Personalizing information retrieval for multi-session search tasks. Proc. SIGIR, 26--33.
    [31]
    Manning, C. D. and Schütze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.
    [32]
    Marchionini, G. (2006). Exploratory search: From finding to understanding. CACM, 49(4): 41--46.
    [33]
    Mei, Q., Zhou, D., and Church, K. (2008). Query suggestion using hitting time. Proc. CIKM, 469--478
    [34]
    Morris, D., Morris, M. R., and Venolia, G. (2008). SearchBar: A search-centric web history for task resumption and information refinding. Proc. SIGCHI, 1207--1216.
    [35]
    O'Connor, B., Krieger, M., and Ahn, D. (2010). TweetMotif: Exploratory search and topic summarization for twitter. Proc. ICWSM, 384--385.
    [36]
    Olston, C. and Chi, E. (2003). ScentTrails: Integrating browsing and searching on the web. TOCHI, 10(3): 1--21.
    [37]
    Pantel, P., Lin, T., and Gamon, M. (2012). Mining entity types from query logs via user intent. Proc. ACL, 563--571.
    [38]
    Raman, K., Bennett, P. N., and Collins-Thompson, K. (2013). Toward whole session relevance: Exploring intrinsic diversity in web search. Proc. SIGIR, 463--472.
    [39]
    Singla, A., White, R. W., and Huang, J. (2010). Studying trail-finding algorithms for enhanced web search. Proc. SIGIR, 443--450.
    [40]
    Villa, R., Cantador, I., Joho, H., and Jose, J. (2009). An aspectual interface for supporting complex search tasks. Proc. SIGIR, 379--386.
    [41]
    Voorhees, E. M. and Harman, D. K. eds. (2000). TREC-9. The ninth Text REtrieval Conference. Washington, D.C.: GPO.
    [42]
    Wexelblat, A. and Maes, P. (1999). Footprints: history-rich tools for information foraging. Proc. SIGCHI, 270--277.
    [43]
    White, R. W., Bennett, P., and Dumais, S. (2010). Predicting short-term interests using activity-based search context. Proc. CIKM, 1009--1018.
    [44]
    White, R. W. and Huang, J. (2010). Assessing the scenic route: Measuring the value of search trails in web logs. Proc. of SIGIR, 587--594.
    [45]
    White, R. W. and Roth, R. A. (2009). Exploratory Search: Beyond the Query-Response Paradigm. Morgan Claypool.
    [46]
    Ziegler, C., McNee, S. M., Konstan, J. A., and Lausen, G. (2005). Improving recommendation lists through topic diversification, Proc. WWW, 22--32.

    Cited By

    View all

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    CIKM '14: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management
    November 2014
    2152 pages
    ISBN:9781450325981
    DOI:10.1145/2661829
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. complex search tasks
    2. exploratory search
    3. task recommendation

    Qualifiers

    • Research-article

    Conference

    CIKM '14
    Sponsor:

    Acceptance Rates

    CIKM '14 Paper Acceptance Rate 175 of 838 submissions, 21%;
    Overall Acceptance Rate 1,861 of 8,427 submissions, 22%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)49
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Predicting Representations of Information Needs from Digital Activity ContextACM Transactions on Information Systems10.1145/363981942:4(1-29)Online publication date: 15-Jan-2024
    • (2024)Graduate student search strategies within academic digital librariesInternational Journal on Digital Libraries10.1007/s00799-023-00378-x25:2(303-316)Online publication date: 1-Jun-2024
    • (2023)Tasks, Copilots, and the Future of Search: A Keynote at SIGIR 2023ACM SIGIR Forum10.1145/3642979.364298557:2(1-8)Online publication date: 1-Dec-2023
    • (2023)Representing Tasks with a Graph-Based Method for Supporting Users in Complex Search TasksProceedings of the 2023 Conference on Human Information Interaction and Retrieval10.1145/3576840.3578279(378-382)Online publication date: 19-Mar-2023
    • (2023)Tasks, Copilots, and the Future of SearchProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3593069(5-6)Online publication date: 19-Jul-2023
    • (2023)Characterization and Prediction of Mobile TasksACM Transactions on Information Systems10.1145/352271141:1(1-39)Online publication date: 9-Jan-2023
    • (2023)An Architecture to Research Aggregated Vertical Web Search Results2023 25th International Multitopic Conference (INMIC)10.1109/INMIC60434.2023.10465931(1-4)Online publication date: 17-Nov-2023
    • (2023)Recommending tasks based on search queries and missionsNatural Language Engineering10.1017/S1351324923000219(1-25)Online publication date: 17-May-2023
    • (2023)Characterizing and Early Predicting User Performance for Adaptive Search Path RecommendationProceedings of the Association for Information Science and Technology10.1002/pra2.79960:1(408-420)Online publication date: 22-Oct-2023
    • (2022)Extracting Searching as Learning Tasks Based on IBRT ApproachApplied Sciences10.3390/app1212587912:12(5879)Online publication date: 9-Jun-2022
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media