Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/267460.267477acmconferencesArticle/Chapter ViewAbstractPublication PagescoltConference Proceedingsconference-collections
Article
Free access

On the complexity of learning for a spiking neuron (extended abstract)

Published: 01 July 1997 Publication History
First page of PDF

References

[1]
H. Agmon-Snir and I. Segev. Signal delay and input synchronization in passive dendritic structures. Journal of Neurophysioiogy, 70:2066-2085, 1993.
[2]
M. Anthony and N. Biggs. Computational Learning Theory. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, 1992.
[3]
A. L. Blum and R. L. Rivest. Training a 3-node neural network is NP-complete. Neural Networks, 5:117-127, 1992.
[4]
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik- Chervonenkis dimension. Journal of the Association for Computing Machinery, 36:929-965, 1989.
[5]
T. M. Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Transactions on Electronic Computers, 14:326-334, 1965.
[6]
M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP- Completeness. W. H. Freeman, New York, 1979.
[7]
W. Gerstner. Time structure of the activity in neural network models. Phys. Rev. E, 51:738-758, 1995.
[8]
W. Gerstner, R. Kempter, J. L. van Hemmen, and H. Wagner. A neuronal learning rule for submillisecond temporal coding. Nature, 383:76-78, 1996.
[9]
D. Haussler. Decision theoretic generalizations of the PAC model for neural net and other learning applications. Information and Computation, 100:78-150, 1992.
[10]
K.-U. Hoffgen, H.-U. Simon, and K. S. Van Horn. Robust trainability of single neurons. Journal of Computer and System Sciences, 50:114-125, 1995.
[11]
M. Kearns, M. Li, and L. Valiant. Learning Boolean formulas. Journal of the ACM, 41:1298- 1328, 1994.
[12]
M. J. Kearns, R. E. Schapire, and L. M. Sellie. To ward efficient agnostic learning. Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory, ACM Press, New York, 1992, pp. 341-352.
[13]
W. Maass. Fast sigmoidal networks via spiking neurons. Neural Computation, 9:279-304, 1997.
[14]
W. Maass. Networks of spiking neurons: the third generation of neural network models. Neural Networks, to appear; extended abstract in Proceedings of the Seventh Australian Conference on Neural Networks, Canberra, 1996, pp. 1-10.
[15]
S. Muroga. Threshold Logic and Its Applications. John Wiley & Sons, New York, 1971.
[16]
S. Muroga and I. Toda. Lower bound of the number of threshold functions. IEEE Transactions on Electronic Computers, 15:805-806, 1966.
[17]
A. Murray and L. Tarassenko. Analogue Neural VLSI: A Pulse Stream Approach. Chapman & Hall, London, 1994.
[18]
L. Schlafli. Gesammelte Mathematische Abhandlungen I. Birkhauser, Basel, 1950, pp. 209-212.
[19]
H. C. Tuckwell. Introduction to Theoretical Neurobiology, vols. 1 and 2. Cambridge University Press, Cambridge, 1988.
[20]
L. G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134-1142, 1984.
[21]
A. M. Zador and B. A. Pearlmutter. VC dimension of an integrate-and-fire neuron model. Neural Computation, 8:611-624, 1996.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
COLT '97: Proceedings of the tenth annual conference on Computational learning theory
July 1997
338 pages
ISBN:0897918916
DOI:10.1145/267460
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 1997

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

COLT97
Sponsor:

Acceptance Rates

Overall Acceptance Rate 35 of 71 submissions, 49%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)6
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Signal Perceptron: On the Identifiability of Boolean Function Spaces and BeyondFrontiers in Artificial Intelligence10.3389/frai.2022.7702545Online publication date: 2-Jun-2022
  • (2019)On the relevance of time in neural computation and learningTheoretical Computer Science10.1016/S0304-3975(00)00137-7261:1(157-178)Online publication date: 22-Nov-2019
  • (2018)SLAYERProceedings of the 32nd International Conference on Neural Information Processing Systems10.5555/3326943.3327073(1419-1428)Online publication date: 3-Dec-2018
  • (2018)Effects of Temporal Integration on Computational Performance of Spiking Neural NetworkAdvances in Cognitive Neurodynamics (VI)10.1007/978-981-10-8854-4_16(127-133)Online publication date: 29-Jun-2018
  • (1999)On Computation with PulsesInformation and Computation10.1006/inco.1998.2743148:2(202-218)Online publication date: Feb-1999

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media