Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2676629.2676635acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

A system for geoanalysis of clinical and geographical data

Published: 04 November 2014 Publication History

Abstract

Patients enrolled in clinical trials are regularly subject to biological analyses and related data is included in Electronic Medical Records (EMRs) to summarize patient health status and to support administrative information. Well defined protocols guide the bioanalytes studies on patients. Often EMRs also contain geographical data about patients, i.e. place of birth and place of living. The integration of geographical data and biological analytes may represent a meaningful way to extract hidden information from data. For instance, possible correlations among outlier patients and some feature of areas they live in.
In collaboration with the University Hospital of Catanzaro, we designed a framework able to integrate and analyze biological analytes. The system is able to relate biological data to diagnosis codes and to analyze integrated data against geographic areas of interest. The aim is to show correlations among patients features (e.g. cluster of patients with similar profiles or outlier patients) and areas features (e.g. presence of power grids or polluted sites). In addition we present a study on correlations between cardiovascular diseases and water quality in Calabria.

References

[1]
F. S. Roque, P. B. Jensen, H. Schmock, M. Dalgaard, M. Andreatta, T. Hansen, K. Soeby, S. Bredkjr, A. Juul, T. Werge, L. J. Jensen, S. Brunak, Using electronic patient records to discover disease correlations and stratify patient cohorts, PLoS Comput Biol, 7(8), 2011
[2]
S. Meystre, P. J. Haug, Natural language processing to extract medical problems from electronic clinical documents: performance evaluation, Journal of biomedical informatics, 39(6), 2006
[3]
O. Bodenreider, Biomedical ontologies in action: role in knowledge management, data integration and decision support, Yearb Med Inform, 47(1), 2008
[4]
N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith, C. Jonquet, D. L. Rubin, M. Storey, C. G. Chute, M. A. Musen, BioPortal: ontologies and integrated data resources at the click of a mouse, Nucl. Acids Res., 37(2), 2002
[5]
H. Xu, S. P. Stenner, S. Doan, K. B. Johnson, L. R. Waitman, J. C. Denny, Application of information technology: MedEx: a medication information extraction system for clinical narratives, J Am Med Inform Assoc, 17(1), 19--24, 2010
[6]
G. Hripcsak, C. Friedman, P. O. Alderson, Unlocking clinical data from narrative reports: a study of natural language processing, Ann Intern Med, 122, 681--8, 1995
[7]
O. Bodenreider, The unified medical language system (UMLS): integrating biomedical terminology, Nucleic Acids Research, 32(1), 2004
[8]
J. E. Roger, Quality Assurance of Medical Ontologies, Methods Inf Med 45(3), 267--274, 2006
[9]
International Health Terminology Standards Development Organisation, SNOMED website, http://www.ihtsdo.org/snomed-ct/, 2014
[10]
Gene Ontology Consortium, The Gene Ontology (GO) database and informatics resource, Nucl. Acids Res., 32(1), 2004
[11]
L. M. Schriml, C. Arze, S. Nadendla, W. Chang, M. Mazaitis, V. Felix, G. Feng, W. Kibbe, Disease Ontology: a backbone for disease semantic integration, Nucl. Acids Res., 40, 2012
[12]
C. E. Lipscomb, Medical Subject Headings (MeSH), Bull. Med. Libr. Assoc., 88(3), 2000 http://www.nlm.nih.gov/mesh/
[13]
D. A. Moore, T. E. Carpenter, Spatial Analytical Methods and Geographic Information Systems: Use in Health Epidemiology, Epidemiol Rev., 21(2), 1999
[14]
C. R. Williams-DeVane, D. M. Reif, E. C. Hubal, P. R. Bushel, E. E. Hudgens, J. E. Gallagher, S. W. Edwards, Decision tree-based method for integrating gene expression, demographic, and clinical data to determine disease endotypes, BMC Systems Biology, 7(119), 2013
[15]
S. K. David, A. T. M. Saeb, K. Al Rubeaan, Comparative Analysis of Data Mining Tools and Classification Techniques using WEKA in Medical Bioinformatics, Computer Engineering and Intelligent Systems, 4(13), 2013
[16]
L. de Andrade, C. Lynch, E. M. Spiecker, M. D. de B. Carvalho, O. K. Nihei, Spatial Distribution of Ischemic Heart Disease Mortality in Rio Grande do Sul, Brazil, 2nd International ACM SIGSPATIAL Workshop on HealthGIS, 2013.
[17]
G. Tradigo, P. Veltri, O. Marasco, G. Scozzafava, G. Parlato, S. Greco, Studying neonatal TSH distribution by using GIS, ACM HealthGIS, 2012
[18]
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten, The WEKA Data Mining Software: An Update, SIGKDD Explorations, 2009
[19]
A. R. Aronson, Effective mapping of biomedical text to the UMLS metathesaurus: the MetaMap program, Proceedings of AMIA Annual Symposium, 2001
[20]
QGIS Development Team, QGIS Geographic Information System, Open Source Geospatial Foundation, 2009, http://qgis.osgeo.org
[21]
P. R. Hunter, A. M. MacDonald, R. C. Carter, Water Supply and Health, PLoS Med, 7(11), 2010
[22]
R. Maheswaran, S. Morris, S. Falconer, A. Grossinho, I. Perry, J. Wakefield, P. Elliott, Magnesium in drinking water supplies and mortality from acute myocardial infarction in north west England, Heart 82, 455--460, 1999
[23]
A. Kousa, E. Moltchanova, M. Viik-Kajander, M. Rytkönen, J. Tuomilehto, T. Tarvainen, M. Karvonen, Geochemistry of ground water and the incidence of acute myocardial infarction in Finland, Epidemiol Community Health, 58, 136--139, 2004
[24]
Rylander R, Arnaud M., Mineral water intake reduces blood pressure among subjects with low urinary magnesium and calcium levels, BMC Public Health, 4: 56. 2004.
[25]
Cotruvo J, Bartram J, Calcium and Magnesium in Drinking-water: Public health significance. World Health Organization, 2009

Cited By

View all
  • (2024)Application of Spatial Analysis on Electronic Health Records to Characterize Patient Phenotypes: Systematic ReviewJMIR Medical Informatics10.2196/5634312(e56343)Online publication date: 15-Oct-2024
  • (2019)A geographical patients based health information system2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM47256.2019.8983079(2300-2303)Online publication date: Nov-2019

Index Terms

  1. A system for geoanalysis of clinical and geographical data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    HealthGIS '14: Proceedings of the Third ACM SIGSPATIAL International Workshop on the Use of GIS in Public Health
    November 2014
    74 pages
    ISBN:9781450331364
    DOI:10.1145/2676629
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 04 November 2014

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. EMR
    2. clinical diagnosis analysis
    3. data analysys
    4. geographical data analysis
    5. spatial data

    Qualifiers

    • Research-article

    Funding Sources

    • MIUR

    Conference

    SIGSPATIAL '14
    Sponsor:
    • University of North Texas
    • Microsoft
    • ORACLE
    • Facebook
    • SIGSPATIAL

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)2
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 25 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Application of Spatial Analysis on Electronic Health Records to Characterize Patient Phenotypes: Systematic ReviewJMIR Medical Informatics10.2196/5634312(e56343)Online publication date: 15-Oct-2024
    • (2019)A geographical patients based health information system2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)10.1109/BIBM47256.2019.8983079(2300-2303)Online publication date: Nov-2019

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media