Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2739480.2754784acmconferencesArticle/Chapter ViewAbstractPublication PagesgeccoConference Proceedingsconference-collections
research-article

Examining the "Best of Both Worlds" of Grammatical Evolution

Published: 11 July 2015 Publication History

Abstract

Grammatical Evolution (GE) has a long history in evolutionary computation. Central to the behaviour of GE is the use of a linear representation and grammar to map individuals from search spaces into problem spaces. This genotype to phenotype mapping is often argued as a distinguishing property of GE relative to other techniques, such as context-free grammar genetic programming (CFG-GP). Since its initial description, GE research has attempted to incorporate information from the grammar into crossover, mutation, and individual initialisation, blurring the distinction between genotype and phenotype and creating GE variants closer to CFG-GP. This is argued to provide GE with the "best of both worlds", allowing degrees of grammatical bias to be introduced into operators to best suit the given problem. This paper examines the behaviour of three grammar-based search methods on several problems from previous GE research. It is shown that, unlike CFG-GP, the performance of "pure" GE on the examined problems closely resembles that of random search. The results suggest that further work is required to determine the cases where the "best of both worlds" of GE are required over a straight CFG-GP approach.

References

[1]
E. K. Burke, M. R. Hyde, and G. Kendall. Grammatical evolution of local search heuristics. IEEE Transactions on Evolutionary Computation, 16(3):406--417, 2012.
[2]
J. Byrne, M. O'Neill, J. McDermott, and A. Brabazon. An analysis of the behaviour of mutation in grammatical evolution. In A. I. Esparcia-Alcázar, A. Ekárt, S. Silva, S. Dignum, and A. S. Etaner-Uyar, editors, Genetic Programming, Proceedings of EuroGP'2010, volume 6021 of Lecture Notes in Computer Science, pages 14--25. Springer, 2010.
[3]
W. Fontana. Algorithmic chemistry. In C. Langton, C. Taylor, J. Farmer, and S. Rasmussen, editors, Artificial Life II, volume 2, pages 159--209. Addison-Wesly, Reading, 1991.
[4]
R. Harper and A. Blair. A structure preserving crossover in grammatical evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 3, pages 2537--2544. IEEE, 2005.
[5]
J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.
[6]
J. Kubalik, J. Koutnik, and L. J. M. Rothkrantz. Grammatical evolution with bidirectional representation. In C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, and E. Costa, editors, Genetic Programming, Proceedings of EuroGP'2003, volume 2610 of LNCS, pages 354--363, 2003.
[7]
W. B. Langdon and R. Poli. Why ants are hard. In J. R. Koza, W. Banzhaf, K. Chellapilla, K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and R. Riolo, editors, Genetic Programming 1998: Proceedings of the Third Annual Conference, pages 193--201, University of Wisconsin, Madison, Wisconsin, USA, 22--25 July 1998. Morgan Kaufmann.
[8]
R. Marshall, M. Johnston, and M. Zhang. Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In G. Dick, W. Browne, P. Whigham, M. Zhang, L. Bui, H. Ishibuchi, Y. Jin, X. Li, Y. Shi, P. Singh, K. Tan, and K. Tang, editors, Simulated Evolution and Learning, volume 8886 of Lecture Notes in Computer Science, pages 668--679. Springer International Publishing, 2014.
[9]
R. I. McKay, N. X. Hoai, P. A. Whigham, Y. Shan, and M. O'Neill. Grammar-based genetic programming: a survey. Genetic Programming and Evolvable Machines, 11:365--396, 2010.
[10]
D. J. Montana. Strongly typed genetic programming. Evolutionary Computation, 3(2):199--230, 1995.
[11]
E. Murphy, M. O'Neill, E. G. López, and A. Brabazon. Tree-adjunct grammatical evolution. In Proceedings of the 2010 IEEE Congress on Evolutionary Computation, pages 1--8. IEEE, 2010.
[12]
M. O'Neill, A. Brabazon, M. Nicolau, S. M. Garraghy, and P. Keenan. πgrammatical evolution. In K. Deb, R. Poli, W. Banzhaf, H.-G. Beyer, E. Burke, P. Darwen, D. Dasgupta, D. Floreano, J. Foster, M. Harman, O. Holland, P. L. Lanzi, L. Spector, A. Tettamanzi, D. Thierens, and A. Tyrrell, editors, Genetic and Evolutionary Computation -- GECCO-2004, Part II, volume 3103 of Lecture Notes in Computer Science, pages 617--629. Springer-Verlag, 2004.
[13]
M. O'Neill, E. Hemberg, C. Gilligan, E. Bartley, J. McDermott, and A. Brabazon. Geva: Grammatical evolution in java. SIGEVOlution, 3(2):17--22, July 2008.
[14]
M. O'Neill, J. McDermott, J. M. Swafford, J. Byrne, E. Hemberg, A. Brabazon, E. Shotton, C. McNally, and M. Hemberg. Evolutionary design using grammatical evolution and shape grammars: Designing a shelter. International Journal of Design Engineering, 3(1):4--24, 2010.
[15]
M. O'Neill and C. Ryan. Automatic generation of programs with grammatical evolution. In D. Bridge, R. Byrne, B. O'Sullivan, S. Prestwich, and H. Sorensen, editors, Artificial Intelligence and Cognitive Science AICS 1999, number 10 in, University College Cork, Ireland, 1--3 Sept. 1999.
[16]
M. O'Neill and C. Ryan. Grammatical evolution. IEEE Transactions on Evolutionary Computation, 5(4):349--358, Aug. 2001.
[17]
M. O'Neill and C. Ryan. Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language, volume 4 of Genetic Programming. Kluwer Academic Publishers, 2003.
[18]
A. Ratle and M. Sebag. Avoiding the bloat with probabilistic grammar-guided genetic programming. In P. Collet, C. Fonlupt, J.-K. Hao, E. Lutton, and M. Schoenauer, editors, Artificial Evolution 5\textsuperscriptth International Conference, Evolution Artificielle, EA 2001, volume 2310 of LNCS, pages 255--266. Springer Verlag, 2001.
[19]
F. Rothlauf. Representations for genetic and evolutionary algorithms. Springer, second edition, 2006.
[20]
F. Rothlauf. Design of Modern Heuristics. Natural Computing Series. Springer, 2011.
[21]
F. Rothlauf and M. Oetzel. On the locality of grammatical evolution. In P. Collet, M. Tomassini, M. Ebner, S. Gustafson, and A. Ekárt, editors, Proceedings of the 9th European Conference on Genetic Programming, volume 3905 of Lecture Notes in Computer Science, pages 320--330. Springer, 2006.
[22]
C. Ryan and R. M. A. Azad. Sensible initialisation in grammatical evolution. In A. M. Barry, editor, GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, pages 142--145. AAAI, 11 July 2003.
[23]
C. Ryan and M. O'Neill. Grammatical evolution: A steady state approach. In J. R. Koza, editor, Late Breaking Papers at the Genetic Programming 1998 Conference, pages 180--185, University of Wisconsin, Madison, Wisconsin, USA, 22--25 July 1998. Stanford University Bookstore.
[24]
J. M. Swafford, E. Hemberg, M. O'Neill, M. Nicolau, and A. Brabazon. A non-destructive grammar modification approach to modularity in grammatical evolution. In Proceedings of the 13\textsuperscriptth Annual Conference on Genetic and Evolutionary Computation, GECCO '11, pages 1411--1418, New York, NY, USA, 2011. ACM.
[25]
J. M. Swafford, M. O'Neill, M. Nicolau, and A. Brabazon. Exploring grammatical modification with modules in grammatical evolution. In S. Silva, J. A. Foster, M. Nicolau, P. Machado, and M. Giacobini, editors, Genetic Programming, volume 6621 of Lecture Notes in Computer Science, pages 310--321. Springer Berlin Heidelberg, 2011.
[26]
P. A. Whigham. Inductive bias and genetic programming. In A. M. S. Zalzala, editor, First International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications, GALESIA, volume 414, pages 461--466. IEE, 1995.
[27]
B. C. White, J. C. Gilbert, D. M. Reif, and J. H. Moore. A statistical comparison of grammatical evolution strategies in the domain of human genetics. In D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, and M. Schoenauer, editors, Proceedings of the 2005 IEEE Congress on Evolutionary Computation, volume 1, pages 491--497, Edinburgh, UK, 2--5 Sept. 2005. IEEE Press.
[28]
D. R. White, J. McDermott, M. Castelli, L. Manzoni, B. Goldman, G. Kronberger, W. Jaskowski, U.-M. O'Reilly, and S. Luke. Better GP benchmarks: community survey results and proposals. Genetic Programming and Evolvable Machines, 14(1):3--29, 2013.
[29]
M. L. Wong and K. S. Leung. Combining genetic programming and inductive logic programming using logic grammars. In Proceedings of the 1995 IEEE Conference on Evolutionary Computation, volume 2, pages 733--736. IEEE Press, 1995.

Cited By

View all
  • (2024)A comparison of representations in grammar-guided genetic programming in the context of glucose prediction in people with diabetesGenetic Programming and Evolvable Machines10.1007/s10710-024-09502-526:1Online publication date: 9-Dec-2024
  • (2023)Comparing Individual Representations in Grammar-Guided Genetic Programming for Glucose Prediction in People with DiabetesProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596315(2013-2021)Online publication date: 15-Jul-2023
  • (2023)The Influence of Probabilistic Grammars on EvolutionProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3590706(611-614)Online publication date: 15-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
GECCO '15: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation
July 2015
1496 pages
ISBN:9781450334723
DOI:10.1145/2739480
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 11 July 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. genotype-to-phenotype mapping
  2. grammar-based evolutionary search
  3. grammatical evolution

Qualifiers

  • Research-article

Conference

GECCO '15
Sponsor:

Acceptance Rates

GECCO '15 Paper Acceptance Rate 182 of 505 submissions, 36%;
Overall Acceptance Rate 1,669 of 4,410 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)15
  • Downloads (Last 6 weeks)0
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A comparison of representations in grammar-guided genetic programming in the context of glucose prediction in people with diabetesGenetic Programming and Evolvable Machines10.1007/s10710-024-09502-526:1Online publication date: 9-Dec-2024
  • (2023)Comparing Individual Representations in Grammar-Guided Genetic Programming for Glucose Prediction in People with DiabetesProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596315(2013-2021)Online publication date: 15-Jul-2023
  • (2023)The Influence of Probabilistic Grammars on EvolutionProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3590706(611-614)Online publication date: 15-Jul-2023
  • (2023)Comparing the expressive power of Strongly-Typed and Grammar-Guided Genetic ProgrammingProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590507(1100-1108)Online publication date: 15-Jul-2023
  • (2023)Biological insights on grammar-structured mutations improve fitness and diversityProceedings of the Genetic and Evolutionary Computation Conference10.1145/3583131.3590472(558-567)Online publication date: 15-Jul-2023
  • (2023)Context Matters: Adaptive Mutation for GrammarsGenetic Programming10.1007/978-3-031-29573-7_8(117-132)Online publication date: 29-Mar-2023
  • (2023)Domain-Aware Feature Learning with Grammar-Guided Genetic ProgrammingGenetic Programming10.1007/978-3-031-29573-7_15(227-243)Online publication date: 29-Mar-2023
  • (2022)Data Types as a More Ergonomic Frontend for Grammar-Guided Genetic ProgrammingProceedings of the 21st ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences10.1145/3564719.3568697(86-94)Online publication date: 29-Nov-2022
  • (2022)Initialisation and grammar design in grammar-guided evolutionary computationProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3520304.3529051(534-537)Online publication date: 9-Jul-2022
  • (2022)Co-evolutionary probabilistic structured grammatical evolutionProceedings of the Genetic and Evolutionary Computation Conference10.1145/3512290.3528833(991-999)Online publication date: 8-Jul-2022
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media