Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2746090.2746109acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicailConference Proceedingsconference-collections
extended-abstract

Transfer of predictive models for classification of statutory texts in multi-jurisdictional settings

Published: 08 June 2015 Publication History

Abstract

In this paper we use statistical machine learning to classify statutory texts in terms of highly specific functional categories. We focus on regulatory provisions from multiple US state jurisdictions, all dealing with the same general topic of public health system emergency preparedness and response. In prior work we have established that one can improve classification performance on one jurisdiction's statutory texts using texts from another jurisdiction. Here we describe a framework facilitating transfer of predictive models for classification of statutory texts among multiple state jurisdictions. Our results show that the classification performance improves as we employ an increasing number of models trained on data coming from different states.

References

[1]
I. Batal, C. Hong, and M. Hauskrecht. An efficient probabilistic framework for multi-dimensional classification. In CIKM, pages 2417--2422, 2013.
[2]
C. Biagioli, E. Francesconi, A. Passerini, S. Montemagni, and C. Soria. Automatic semantics extraction in law documents. In ICAIL '05, pages 133--140. ACM, 2005.
[3]
G. Boella, L. D. Caro, L. Lesmo, D. Rispoli, and L. Robaldo. Multi-label classification of legislative text into eurovoc. In B. Schäfer, editor, JURIX 2012, pages 21--30. IOS Press, 2012.
[4]
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. Smote: Synthetic minority over-sampling technique. J. Artif. Int. Res., 16: 321--357, 2002.
[5]
V. Daudaravicius. Automatic multilingual annotation of eu legislation with eurovoc descriptors. In EEOP2012 Workshop Proceedings, 2012.
[6]
E. de Maat, K. Krabben, and R. Winkels. Machine learning versus knowledge based classification of legal texts. In R. Winkels, editor, JURIX 2010, pages 87--96. IOS Press, 2010.
[7]
E. de Maat. and R. Winkels. Categorisation of norms. In JURIX 2007, pages 79--88. IOS Press, 2007.
[8]
T. Evgeniou and M. Pontil. Regularized multi--task learning. In KDD'04, pages 109--117, 2004.
[9]
E. Francesconi. An approach to legal rules modelling and automatic learning. In G. Governatori, editor, JURIX 2009, pages 59--68. IOS Press, 2009.
[10]
E. Francesconi, S. Montemagni, W. Peters, and D. Tiscornia. Semantic Processing of Legal Texts, chapter Integrating a Bottom-up and Top-Down Methodology for Building Semantic Resources for the Multilingual Legal Domain, pages 95--121. Number 6036 in LNAI. Springer, Berlin, 2010.
[11]
E. Francesconi and A. Passerini. Automatic classification of provisions in legislative texts. AI and Law, 15: 1--17, 2007.
[12]
E. Francesconi. and G. Peruginelli. Integrated access to legal literature through automated semantic classification. AI and Law, 17: 31--49, 2008.
[13]
M. Grabmair, K. D. Ashley, R. Hwa, and P. M. Sweeney. Toward extracting information from public health statutes using text classification and machine learning. In K. M. Atkinson, editor, JURIX 2011, pages 73--82. IOS Press, 2011.
[14]
N. Kakwani. On a class of poverty measures. Econometria, pages 437--446, 1980.
[15]
R. Opsomer, G. D. Meyer, C. Cornelis, and G. van Eetvelde. Exploiting properties of legislative texts to improve classification accuracy. In G. Governatori, editor, JURIX 2009, pages 136--145. IOS Press, 2009.
[16]
S. J. Pan and Q. Yang. A survey on transfer learning. TKDE, 22(10): 1345--1359, 2010.
[17]
B. Pouliquen, R. Steinberger, and C. Ignat. Automatic annotation of multi-lingual text collections with a conceptual thesaurus. arXiv preprint, 2006.
[18]
R. Steinberger, M. Ebrahim, and C. Ignat. Jrc eurovoc indexer jex-a freely available multi-label categorisation tool. arXiv preprint, 2013.
[19]
P. M. Sweeney, E. E. Bjerke, M. A. Potter, H. Guclu, C. R. Keane, K. D. Ashley, M. Grabmair, and R. Hwa. Network analysis of manually-encoded state laws and prospects for automation. In R. Winkels, N. Lattieri, and S. Faro, editors, Network Analysis in Law, pages 53--78, Napoli, 2014. Diritto Scienza Technologia.
[20]
J. Šavelka, M. Grabmair, and K. D. Ashley. Mining information from statutory texts in multi-jurisdictional settings. In R. Hoekstra, editor, JURIX 2014, pages 133--142. IOS Press, 2014.
[21]
R. Winkels and R. Hoekstra. Automatic extraction of legal concepts and definitions. In JURIX 2012, pages 157--166, 2012.
[22]
A. Wyner and W. Peters. On rule extraction from regulations. In JURIX 2011, pages 113--122. IOS Press, 2011.

Cited By

View all
  • (2023)Unlocking Practical Applications in Legal DomainProceedings of the Nineteenth International Conference on Artificial Intelligence and Law10.1145/3594536.3595161(447-451)Online publication date: 19-Jun-2023
  • (2021)Application of Machine Learning Metrics for Dynamic E-justice Processes2021 28th Conference of Open Innovations Association (FRUCT)10.23919/FRUCT50888.2021.9347598(293-300)Online publication date: 27-Jan-2021
  • (2021)Lex RosettaProceedings of the Eighteenth International Conference on Artificial Intelligence and Law10.1145/3462757.3466149(129-138)Online publication date: 21-Jun-2021
  • Show More Cited By

Index Terms

  1. Transfer of predictive models for classification of statutory texts in multi-jurisdictional settings

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      ICAIL '15: Proceedings of the 15th International Conference on Artificial Intelligence and Law
      June 2015
      246 pages
      ISBN:9781450335225
      DOI:10.1145/2746090
      • Conference Chair:
      • Ted Sichelman,
      • Program Chair:
      • Katie Atkinson
      Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

      Sponsors

      • Center for IP Law & Markets: Center for Intellectual Property Law & Markets, University of San Diego School of Law
      • TrademarkNow: TrademarkNow
      • The International Association for Artificial Intelligence and Law
      • Davis Polk: Davis Polk & Wardwell LLP
      • Legal Robot: Legal Robot
      • Thomson Reuters: Thomson Reuters Corporation

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 08 June 2015

      Check for updates

      Author Tags

      1. multiple jurisdictions
      2. public health system
      3. statutory texts
      4. text categorization
      5. transfer learning

      Qualifiers

      • Extended-abstract

      Conference

      ICAIL '15
      Sponsor:
      • Center for IP Law & Markets
      • TrademarkNow
      • Davis Polk
      • Legal Robot
      • Thomson Reuters

      Acceptance Rates

      ICAIL '15 Paper Acceptance Rate 30 of 58 submissions, 52%;
      Overall Acceptance Rate 69 of 169 submissions, 41%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)1
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 28 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Unlocking Practical Applications in Legal DomainProceedings of the Nineteenth International Conference on Artificial Intelligence and Law10.1145/3594536.3595161(447-451)Online publication date: 19-Jun-2023
      • (2021)Application of Machine Learning Metrics for Dynamic E-justice Processes2021 28th Conference of Open Innovations Association (FRUCT)10.23919/FRUCT50888.2021.9347598(293-300)Online publication date: 27-Jan-2021
      • (2021)Lex RosettaProceedings of the Eighteenth International Conference on Artificial Intelligence and Law10.1145/3462757.3466149(129-138)Online publication date: 21-Jun-2021
      • (2017)Semantic types for computational legal reasoningProceedings of the 16th edition of the International Conference on Articial Intelligence and Law10.1145/3086512.3086535(217-226)Online publication date: 12-Jun-2017

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media