Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2789116.2789126acmotherconferencesArticle/Chapter ViewAbstractPublication PagesicdscConference Proceedingsconference-collections
research-article

Using dominant sets for data association in multi-camera tracking

Published: 08 September 2015 Publication History

Abstract

This paper presents a novel approach to solve data association in multi-camera multi-target object tracking. The main novelty is represented by the first known use of dominant set framework for intra-camera and inter-camera data association. Thanks to the properties of dominant sets, we can treat the data association as a global clustering of the detections (people or other targets) obtained over the whole sequence of frames from all the cameras. In order to handle occlusions, splitting and merging of targets, an efficient out-of-sample extension to dominant sets has been introduced to perform data association between different cameras (inter-camera data association). Experiments carried out on PETS '09 public dataset showed promising performance in terms of accuracy (precision and recall, as well as MOTA) when compared with the state of the art.

References

[1]
M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-detection-by-tracking. In IEEE CVPR, pages 1--8, 2008.
[2]
M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool. Robust tracking-by-detection using a detector confidence particle filter. In CVPR, pages 1515--1522, 2009.
[3]
S. Calderara, R. Cucchiara, and A. Prati. Bayesian-competitive consistent labeling for people surveillance. IEEE T-PAMI, 30(2):354--360, 2008.
[4]
N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, volume 1, pages 886--893. IEEE, 2005.
[5]
M. Enzweiler and D. M. Gavrila. Monocular pedestrian detection: Survey and experiments. IEEE T-PAMI, 31(12):2179--2195, 2009.
[6]
P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained part-based models. IEEE T-PAMI, 32(9):1627--1645, 2010.
[7]
J. Ferryman and A. Ellis. Pets2010: Dataset and challenge. In AVSS, pages 143--150. IEEE, 2010.
[8]
F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera people tracking with a probabilistic occupancy map. IEEE T-PAMI, 30(2):267--282, 2008.
[9]
T. E. Fortmann, Y. Bar-Shalom, and M. Scheffe. Sonar tracking of multiple targets using joint probabilistic data association. Oceanic Engineering, IEEE Journal of, 8(3):173--184, 1983.
[10]
J. F. Henriques, R. Caseiro, and J. Batista. Globally optimal solution to multi-object tracking with merged measurements. In IEEE ICCV, pages 2470--2477. IEEE, 2011.
[11]
M. Hofmann, M. Haag, and G. Rigoll. Unified hierarchical multi-object tracking using global data association. In IEEE Intl WS on Performance Evaluation of Tracking and Surveillance, pages 22--28. IEEE, 2013.
[12]
H. Izadinia, I. Saleemi, W. Li, and M. Shah. (mp)2t: Multiple people multiple parts tracker. In Computer Vision--ECCV 2012, pages 100--114. Springer, 2012.
[13]
B. Keni and S. Rainer. Evaluating multiple object tracking performance: the clear mot metrics. EURASIP Journal on Image and Video Processing, 2008, 2008.
[14]
S. Khan and M. Shah. Consistent labeling of tracked objects in multiple cameras with overlapping fields of view. IEEE T-PAMI, 25(10):1355--1360, 2003.
[15]
M. Li, W. Chen, K. Huang, and T. Tan. Visual tracking via incremental self-tuning particle filtering on the affine group. In IEEE CVPR, pages 1315--1322. IEEE, 2010.
[16]
Y. Li, C. Huang, and R. Nevatia. Learning to associate: Hybridboosted multi-target tracker for crowded scene. In IEEE CVPR, pages 2953--2960, 2009.
[17]
D. W. M. Hofmann and G. Rigoll. Hypergraphs for joint multi-view reconstruction and multi-object tracking. In IEEE CVPR, 2013.
[18]
M. J. Metternich and M. Worring. Semi-interactive tracing of persons in real-life surveillance data. In Proc. of ACM WS on Multimedia in Forensics, Security and Intelligence, pages 43--48. ACM, 2010.
[19]
A. Milan, K. Schindler, and S. Roth. Challenges of ground truth evaluation of multi-target tracking. In IEEE CVPR Workshops, pages 735--742, 2013.
[20]
J. Munkres. Algorithms for the assignment and transportation problems. Journal of the Society for Industrial & Applied Mathematics, 5(1):32--38, 1957.
[21]
M. Pavan and M. Pelillo. Efficient out-of-sample extension of dominant-set clusters. In Advances in Neural Information Processing Systems, pages 1057--1064, 2004.
[22]
M. Pavan and M. Pelillo. Dominant sets and pairwise clustering. IEEE T-PAMI, 29(1):167--172, 2007.
[23]
M. Pelillo. The dynamics of nonlinear relaxation labeling processes. Journal of Mathematical Imaging and Vision, 7(4):309--323, 1997.
[24]
M. Piccardi. Background subtraction techniques: a review. In Systems, man and cybernetics, 2004 IEEE international conference on, volume 4, pages 3099--3104. IEEE, 2004.
[25]
H. Possegger, T. Mauthner, P. M. Roth, and H. Bischof. Occlusion geodesics for online multi-object tracking. In IEEE CVPR, pages 1306--1313, 2014.
[26]
D. B. Reid. An algorithm for tracking multiple targets. Automatic Control, IEEE Transactions on, 24(6):843--854, 1979.
[27]
G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah. Part-based multiple-person tracking with partial occlusion handling. In IEEE CVPR, pages 1815--1821, 2012.
[28]
J. W. Weibull. Evolutionary game theory. MIT press, 1997.
[29]
B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by bayesian combination of edgelet based part detectors. International Journal of Computer Vision, 75(2):247--266, 2007.
[30]
A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm computing surveys (CSUR), 38(4):13, 2006.
[31]
Q. Yu and G. Medioni. Multiple-target tracking by spatiotemporal monte carlo markov chain data association. IEEE T-PAMI, 31(12):2196--2210, 2009.
[32]
A. R. Zamir, A. Dehghan, and M. Shah. Gmcp-tracker: Global multi-object tracking using generalized minimum clique graphs. In Computer Vision--ECCV 2012, pages 343--356. Springer, 2012.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ICDSC '15: Proceedings of the 9th International Conference on Distributed Smart Cameras
September 2015
225 pages
ISBN:9781450336819
DOI:10.1145/2789116
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

  • Escuela Técnica superier de Ingeniería Informática, Universidad de Seville, Spain: Escuela Técnica superier de Ingeniería Informática, Universidad de Seville, Spain

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 08 September 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. dominant set clustering
  2. multi-camera surveillance
  3. multi-object tracking
  4. people tracking

Qualifiers

  • Research-article

Conference

ICDSC '15
Sponsor:
  • Escuela Técnica superier de Ingeniería Informática, Universidad de Seville, Spain

Acceptance Rates

ICDSC '15 Paper Acceptance Rate 43 of 48 submissions, 90%;
Overall Acceptance Rate 92 of 117 submissions, 79%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 153
    Total Downloads
  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media