Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2791347.2791368acmotherconferencesArticle/Chapter ViewAbstractPublication PagesssdbmConference Proceedingsconference-collections
research-article

Optimizing continuous queries using update propagation with varying granularities

Published: 29 June 2015 Publication History

Abstract

We investigate the possibility to use update propagation methods for optimizing the evaluation of continuous queries. Update propagation allows for the efficient determination of induced changes to derived relations resulting from an explicitly performed base table update. In order to simplify the computation process, we propose the propagation of updates with different degrees of granularity which corresponds to an incremental query evaluation with different levels of accuracy. We show how propagation rules for different update granularities can be systematically derived, combined and further optimized by using Magic Sets. This way, the costly evaluation of certain subqueries within a continuous query can be systematically circumvented allowing for cutting down on the number of pipelined tuples considerably.

References

[1]
D. J. Abadi et al.: Aurora: A Data Stream Management System. SIGMOD 2003: p. 666.
[2]
K. R. Apt, H. A. Blair, and A. Walker: Towards a Theory of Declarative Knowledge. Foundations of Deductive Databases and Logic Programs, pp. 89--148 (1988).
[3]
A. Arasu et al.: STREAM: The Stanford Stream Data Manager. SIGMOD 2003: page 665.
[4]
A. Arasu, S. Babu, and J. Widom: The CQL Continuous Query Language: Semantic Foundations and Query Execution. VLDB J. 15(2): 121--142 (2006).
[5]
I. Balbin, G. S. Port, K. Ramamohanarao, and K. Meenakshi: Efficient Bottom-Up Computation of Queries. JLP, 11(3&4):295--344 (1991).
[6]
E. Baralis and J. Widom: Querying Graph Databases. PODS 2013, pp. 175--188.
[7]
E. Baralis and J. Widom: A Rewriting Technique for Using Delta Relations to Improve Condition Evaluation in Active Databases. TR CS-93-1495, Stanford University 1993.
[8]
F. Bancilhon, D. Maier, Y. Sagiv, J. D. Ullman: Magic Sets and Other Strange Ways to Implement Logic Programs. PODS 1986: pp. 1--16.
[9]
A. Behrend: Soft Stratification for Magic Set Based Query Evaluation in Deductive Databases. PODS 2003, pp. 102--110.
[10]
A. Behrend and G. Schüller: A Case Study in Optimizing Continuous Queries Using the Magic Update Technique. SSDBM 2014, pp. 31--35.
[11]
A. Behrend et al.: Incremental View-Based Analysis of Stock Market Data Streams. IDEAS 2008, pp. 269--275.
[12]
A. Behrend and R. Manthey: Update Propagation in Deductive Databases Using Soft Stratification. ADBIS 2004: 22-36.
[13]
F. Bry, H. Decker and R. Manthey: A Uniform Approach to Constraint Satisfaction and Constraint Satisfiability in Deductive Databases. EDBT 1988, pp. 488--505.
[14]
S. Ceri and J. Widom: Deriving Production Rules for Incremental View Maintenance. VLDB 1991, pages 577--589.
[15]
J. Chen et al.: NiagaraCQ: A Scalable Continuous Query System for Internet Databases. SIGMOD 2000, pp. 379--390.
[16]
S. K. Das and M. H. Williams: A Path Finding Method for Constraint Checking in Deductive Databases. DKE 4: 223--244 (1989).
[17]
T. M. Ghanem et al.: Supporting Views in Data Stream Management Systems. TODS 35(1): 1--47 (2010).
[18]
U. Griefahn: Reactive Model Computation--A Uniform Approach to the Implementation of Deductive Databases. PhD Thesis, University of Bonn, 1997.
[19]
T. Griffin and L. Libkin: Incremental Maintenance of Views with Duplicates. SIGMOD 1995, pp. 328--339.
[20]
A. Gupta, I. S. Mumick, and K. A. Ross: Adapting materialized views after redefinitions. SIGMOD 1995, 24(2):211--222 (1995).
[21]
A. Gupta, I. S. Mumick, and V. S. Subrahmanian: Maintaining Views Incrementally. SIGMOD 22(2): 157--166 (1993).
[22]
A. Hernich, C. Kupke, T. Lukasiewicz and G. Gottlob: Well-founded Semantics for Extended Datalog and Ontological Reasoning. PODS 2013, pp. 225--236.
[23]
V. Küchenhoff: On the Efficient Computation of the Difference Between Consecutive Database States. DOOD 1991, pp. 478--502.
[24]
J. W. Lloyd, L. Sonenberg and R. W. Topor: Integrity Constraint Checking in Stratified Databases. JLP 4(4): 331--343 (1987).
[25]
B. T. Loo et al.: Declarative Networking. CACM 52(11): 87--95 (2009).
[26]
R. Manthey: Reflections on Some Fundamental Issues of Rule-Based Incremental Update Propagation. DAISD 1994: 255--276.
[27]
B. Martens and M. Bruynooghe: Integrity Constraint Checking in Deductive Databases Using a Rule/Goal Graph. EDS 1988, pp. 567--601.
[28]
G. Moerkotte and S. Karl: Efficient Consistency Control in Deductive Databases. ICDT 1988, pp. 118--128.
[29]
A. Olivé: Integrity Constraints Checking in Deductive Databases. VLDB 1991, pp. 513--523.
[30]
T. Przymusinski: Every Logic Program Has a Natural Stratification and an Iterated Least Fixed Point Model. PODS 1989: 11--21.
[31]
F. Sadri and R. A. Kowalski: A Theorem Proving Approach to Database Integrity. Foundations of Deductive Databases and Logic Programs 1988, pp. 313--362.
[32]
D. Sereni, P. Avgustinov, and O. de Moor: Adding Magic to an Optimising Datalog Compiler. SIGMOD 2008, pp. 553--566.
[33]
A. Shkapsky, K. Zeng and C. Zaniolo: Graph Queries in a Next-Generation Datalog System. PVLDB 6(12): 1258--1261 (2013).
[34]
T. Urpí and A. Olivé: A Method for Change Computation in Deductive Databases. VLDB 1992, pp. 225--237.
[35]
A. Van Gelder: The Alternating Fixpoint of logic programs with Negation. JCSS 47(1):185--221 (1993).
[36]
A. Van Gelder, K. Ross, J. Schlipf: The Well-Founded Semantics for General Logic Programs. JACM 38(3): 620--650 (1991).
[37]
L. Vieille et al.: Integrity Checking and Materialized Views Handling by Update Propagation in the EKS-V1 System. Technical Report TR-KB-35, ECRC, 1991.
[38]
B. Wüthrich: Detecing Inconsistencies in Deductive Databases. Technical Report 1990 TR-123, Swiss Federal Institute of Technology (ETH), 1990.
[39]
C. Zaniolo: Logical Foundations of Continuous Query Languages for Data Streams. Datalog in Academia and Industry - 2cnd International Workshop, Datalog 2.0, pp. 177--189 (2012).

Cited By

View all
  • (2020)Shared Execution Techniques for Business Data Analytics over Big Data StreamsProceedings of the 32nd International Conference on Scientific and Statistical Database Management10.1145/3400903.3400932(1-4)Online publication date: 7-Jul-2020
  • (2017)Living in Parallel RealitiesProceedings of the 2017 ACM International Conference on Management of Data10.1145/3035918.3064046(1101-1116)Online publication date: 9-May-2017

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
SSDBM '15: Proceedings of the 27th International Conference on Scientific and Statistical Database Management
June 2015
390 pages
ISBN:9781450337090
DOI:10.1145/2791347
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 June 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. continuous queries
  2. datalog
  3. deductive databases
  4. incremental evaluation
  5. update propagation

Qualifiers

  • Research-article

Conference

SSDBM 2015

Acceptance Rates

Overall Acceptance Rate 56 of 146 submissions, 38%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)1
  • Downloads (Last 6 weeks)1
Reflects downloads up to 23 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2020)Shared Execution Techniques for Business Data Analytics over Big Data StreamsProceedings of the 32nd International Conference on Scientific and Statistical Database Management10.1145/3400903.3400932(1-4)Online publication date: 7-Jul-2020
  • (2017)Living in Parallel RealitiesProceedings of the 2017 ACM International Conference on Management of Data10.1145/3035918.3064046(1101-1116)Online publication date: 9-May-2017

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media