Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Predicting Appearance from Measured Microgeometry of Metal Surfaces

Published: 29 December 2015 Publication History

Abstract

The visual appearance of many materials is created by micro-scale details of their surface geometry. In this article, we investigate a new approach to capturing the appearance of metal surfaces without reflectance measurements, by deriving microfacet distributions directly from measured surface topography. Modern profilometers are capable of measuring surfaces with subwavelength resolution at increasingly rapid rates. We consider both wave- and geometric-optics methods for predicting BRDFs of measured surfaces and compare the results to optical measurements from a gonioreflectometer for five rough metal samples. Surface measurements are also used to predict spatial variation, or texture, which is especially important for the appearance of our anisotropic brushed metal samples.
Profilometer-based BRDF acquisition offers many potential advantages over traditional techniques, including speed and easy handling of anisotropic, highly directional materials. We also introduce a new generalized normal distribution function, the ellipsoidal NDF, to compactly represent nonsymmetric features in our measured data and texture synthesis.

Supplementary Material

dong (dong.zip)
Supplemental movie, appendix, image and software files for, Predicting Appearance from Measured Microgeometry of Metal Surfaces

References

[1]
M. Ashikhmin, S. Premože, and P. Shirley. 2000. A microfacet-based brdf generator. In Proceedings of SIGGRAPH'00. 65--74.
[2]
M. Ashikhmin and P. Shirley. 2000. An anisotropic phong brdf model. J. Graph. Tools 5, 2, 25--32.
[3]
P. Beckmann and A. Spizzichino. 1968. The Scattering of Electromagnetic Waves from Rough Surfaces. Artech House Radar Library. Books on Demand.
[4]
J. F. Blinn. 1977. Models of light reflection for computer synthesized pictures. In Computer Graphics (Proceedings of SIGGRAPH'77). 192--198.
[5]
B. Burley. 2012. Physically-based shading at disney. In ACM SIGGRAPH 2012 Course: Practical Physically-based Shading in Film and Game Production. SIGGRAPH'12.
[6]
R. L. Cook and K. E. Torrance. 1982. A reflectance model for computer graphics. ACM Trans. Graph. 1, 1, 7--24.
[7]
T. Cuypers, T. Haber, P. Bekaert, S. B. Oh, and R. Raskar. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 122:1--122:11.
[8]
K. Dana. 2001. Brdf/btf measurement device. In Proceedings of ICCV. Vol. 2. 460--466.
[9]
K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1--34.
[10]
D. Dhillon, J. Teyssier, M. Single, I. Gaponenko, M. Milinkovitch, and M. Zwicker. 2014. Interactive diffraction from biological nanostructures. Computer Graphics Forum 33, 8, 177--188.
[11]
Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, Y., M. Ben-Ezra, and B. Guo. 2010. Manifold bootstrapping for svbrdf capture. ACM Trans. Graph. 29, 98:1--98:10.
[12]
A. Gardner, C. Tchou, T. Hawkins, and P. Debevec. 2003. Linear light source reflectometry. ACM Trans. Graph. 22, 3, 749--758.
[13]
G. Garg, G., E.-V. Talvala, M. Levoy, and H. P. A. Lensch. 2006. Symmetric photography: Exploiting data-sparseness in reflectance fields. In Rendering Techniques. 251--262.
[14]
D. Goldman, B. Curless, A. Hertzmann, and S. Seitz. 2005. Shape and spatially-varying brdfs from photometric stereo. In Proceedings of ICCV. Vol. 1. 341--348.
[15]
J. Gu, C.-I. Tu, R. Ramamoorthi, P. Belhumeur, W. Matusik, and S. Nayar, S. 2006. Time-varying surface appearance: acquisition, modeling and rendering. ACM Trans. Graph. 25, 3, 762--771.
[16]
J. Y. Han and K. Perlin. 2003. Measuring bidirectional texture reflectance with a kaleidoscope. ACM Trans. Graph. 22, 3, 741--748.
[17]
X. D. He, K. E. Torrance, F. X. Sillion, and D. P. Greenberg, 1991. A comprehensive physical model for light reflection. SIGGRAPH Comput. Graph. 25, 4, 175--186.
[18]
J. T. Kajiya, 1985. Anisotropic reflection models. SIGGRAPH Comput. Graph. 19, 3, 15--21.
[19]
E. P. F. Lafortune, S.-C. Foo, K. E. Torrance, and D. P. Greenberg. 1997. Non-linear approximation of reflectance functions. In Proceedings of SIGGRAPH. 117--126.
[20]
H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel, 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. 22, 2, 234--257.
[21]
A. Levin, D. Glasner, Y. Xiong, F. Durand, W. Freeman, W. Matusik, and T. Zickler. 2013. Fabricating brdfs at high spatial resolution using wave optics. ACM Trans. Graph. 32, 4, 144:1--144:14.
[22]
H. Li, S. C. Foo, K. E. Torrance, and S. H. Westin. 2005. Automated three-axis gonioreflectometer for computer graphics applications. Opt. Eng. 45, 4.
[23]
H. Li and K. E. Torrance. 2005. An experimental study of the correlation between surface roughness and light scattering for rough metallic surfaces. Proc. SPIE 5878
[24]
J. Löw, J. Kronander, A. Ynnerman, and J. Unger. 2012. Brdf models for accurate and efficient rendering of glossy surfaces. ACM Trans. Graph. 31, 1, 9:1--9:14.
[25]
L. Mandel and E. Wolf. 1995. Optical Coherence and Quantum Optics. Cambridge University Press.
[26]
E. Marx and T. V. Vorburger. 1990. Direct and inverse problems for light scattered by rough surfaces. Appl. Opt. 29, 25, 3613--3626.
[27]
H. Mashaal, A. Goldstein, D. Feuermann, and J. M. Gordon, 2012. First direct measurement of the spatial coherence of sunlight. Opt. Lett. 37, 17, 3516--3518.
[28]
M. E. McKnight, T. V. Vorburger, E. Marx, M. E. Nadal, M. E., P. Y. Barnes, and M. A. Galler. 2001. Measurements and predictions of light scattering by clear coatings. Appl. Opt. 40, 13, 2159--2168.
[29]
G. Müller, J. Meseth, M. Sattler, R. Sarlette, and R. Klein. 2005. Acquisition, synthesis, and rendering of bidirectional texture functions. Comput. Graph. Forum 24, 1, 83--109.
[30]
A. Ngan, F. Durand, and W. Matusik. 2005a. Experimental analysis of brdf models. In Rendering Techniques 2005: 16th Eurographics Workshop on Rendering. 117--126.
[31]
A. Ngan, F. Durand, and W. Matusik. 2005b. Experimental analysis of brdf models. In Proceedings of EGSR. 117--126.
[32]
J. Ogilvy. 1991. Theory of Wave Scattering from Random Rough Surfaces. A. Hilger.
[33]
S. Schröder, A. Duparré, L. Coriand, A. Tünnermann, D. H. Penalver, and J. E. Harvey. 2011. Modeling of light scattering in different regimes of surface roughness. Optics Express 19, 9820.
[34]
J. Stam. 1999. Diffraction shaders. In Proceedings of SIGGRAPH. 101--110.
[35]
L.-P. Sung, M. Nadal, M. E. McKnight, E. Marx, and B. Laurenti. 2002. Optical reflectance of metallic coatings: Effect of aluminum flake orientation. J. Coatings Technology 74, 932, 55--63.
[36]
K. E. Torrance, and E. M. Sparrow. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. A 9, 1105--1114.
[37]
T. S. Trowbridge and K. P. Reitz, 1975. Average irregularity representation of a rough surface for ray reflection. J. Opt. Soc. Am. 65, 5, 531--536.
[38]
B. Walter, S. R. Marschner, H. Li, and K. E. Torrance, 2007. Microfacet models for refraction through rough surfaces. In Proceedings of EGSR. 195--206.
[39]
J. Wang, S. Zhao, X. Tong, J. Snyder, and B. Guo. 2008. Modeling anisotropic surface reflectance with example-based microfacet synthesis. ACM Trans. Graph. 27, 3, 41:1--41:9.
[40]
G. J. Ward. 1992. Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 2, 265--272.
[41]
L.-Q. Yan, M. Hašan, W. Jakob, J. Lawrence, S. Marschner, and R. Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4, 116:1--116:9.
[42]
S. Zhao, W. Jakob, S. Marschner, and K. Bala. 2011. Building volumetric appearance models of fabric using micro ct imaging. ACM Trans. Graph. 30, 4, 44:1--44:10.
[43]
Zygo. 2011. NewviewTM 7300 3d optical surface profiler. http://www.zygo.com/?/met/profilers/newview7000/.

Cited By

View all
  • (2024)Digitizing translucent object appearance by validating computed optical propertiesApplied Optics10.1364/AO.52197463:16(4317)Online publication date: 22-May-2024
  • (2024)A Fully-correlated Anisotropic Micrograin BSDF ModelACM Transactions on Graphics10.1145/365822443:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Learning Surface Scattering Parameters From SAR Images Using Differentiable Ray TracingIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.345962062(1-15)Online publication date: 2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 35, Issue 1
December 2015
150 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/2870647
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 29 December 2015
Accepted: 01 August 2015
Revised: 01 May 2015
Received: 01 November 2014
Published in TOG Volume 35, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Appearance modeling and rendering
  2. kirchhoff scattering
  3. microfacet models
  4. profilometer microgeometry measurement
  5. spatially-variant anisotropic BRDF
  6. surface reflectance

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • Autodesk

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)66
  • Downloads (Last 6 weeks)6
Reflects downloads up to 04 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Digitizing translucent object appearance by validating computed optical propertiesApplied Optics10.1364/AO.52197463:16(4317)Online publication date: 22-May-2024
  • (2024)A Fully-correlated Anisotropic Micrograin BSDF ModelACM Transactions on Graphics10.1145/365822443:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Learning Surface Scattering Parameters From SAR Images Using Differentiable Ray TracingIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.345962062(1-15)Online publication date: 2024
  • (2023)A Practical Wave Optics Reflection Model for Hair and FurACM Transactions on Graphics10.1145/359244642:4(1-15)Online publication date: 26-Jul-2023
  • (2023)A Full-Wave Reference Simulator for Computing Surface ReflectanceACM Transactions on Graphics10.1145/359241442:4(1-17)Online publication date: 26-Jul-2023
  • (2023)Towards Material Digitization with a Dual-scale Optical SystemACM Transactions on Graphics10.1145/359214742:4(1-13)Online publication date: 26-Jul-2023
  • (2023)Deep Appearance PrefilteringACM Transactions on Graphics10.1145/357032742:2(1-23)Online publication date: 16-Jan-2023
  • (2023)Iridescent Water Droplets Beyond Mie ScatteringComputer Graphics Forum10.1111/cgf.1489342:4Online publication date: 26-Jul-2023
  • (2022)A Sparse Non-parametric BRDF ModelACM Transactions on Graphics10.1145/353342741:5(1-18)Online publication date: 26-Oct-2022
  • (2022)Rendering of Subjective Speckle Formed by Rough Statistical SurfacesACM Transactions on Graphics10.1145/347229341:1(1-23)Online publication date: 9-Feb-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media