Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2820783.2820817acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

Understanding hotspots: a topological visual analytics approach

Published: 03 November 2015 Publication History

Abstract

Analysis of spatio-temporal event data is of central importance in many domains of science and policy making. Current visualization methods rely on animation, small multiples, and space-time cubes to enable spatio-temporal data exploration. These methods require the user to remember state spaces or deal with layout occlusions when exploring their data. To overcome such issues, we propose a novel visualization technique for such data that applies the topological notion of Reeb graphs to identify hotspots as areas of relatively high event density within kernel density estimates. We illustrate that the topological identification of hotspots proposed in this paper is able to elucidate lifetime, properties, and relationships of hotspots by visualizing their temporal evolution based on the spatio-temporal Reeb graph. To validate our approach, we demonstrate our method on an epidemiological and a crime dataset. The resulting visualizations assist users in quickly identifying and comprehending important dates, events, hotspot properties, and relationships between hotspots.

References

[1]
G. Andrienko, N. Andrienko, H. Schumann, and C. Tominski. Visualization of Trajectory Attributes in Space-Time Cube and Trajectory Wall. In Cartography from Pole to Pole, pages 157--163. Springer Berlin Heidelberg, 2014.
[2]
N. Andrienko, G. Andrienko, and P. Gatalsky. Exploratory spatio-temporal visualization: an analytical review. Journal of Visual Languages & Computing, 14(6):503--541, 2003.
[3]
K. Bennett, T. Carroll, P. Lowe, and J. Phillipson. Coping with Crisis in Cumbria: the Consequences of Foot and Mouth Disease. Technical report, Centre for Rural Economy, Newcastle University, 2002.
[4]
C. A. Brewer. Designing Better Maps: A Guide for GIS Users. Environmental Systems Research Institute Inc., U.S., 2005.
[5]
C. Brunsdon, J. Corcoran, and G. Higgs. Visualising space and time in crime patterns: A comparison of methods. Computers, Environment and Urban Systems, pages 52--75, 2007.
[6]
Comptroller and Auditor General. The 2001 Outbreak of Foot and Mouth Disease. Technical report, National Audit Office (NAO), 2002.
[7]
Department for Environment, Food and Rural Affairs (DEFRA). Origin of the UK Foot and Mouth Disease epidemic in 2001. Technical report, 2002.
[8]
H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire, and C. Silva. Using Topological Analysis to Support Event-Guided Exploration in Urban Data. IEEE Symposium on Visualization and Computer Graphics, 20(12):2634--2643, 2014.
[9]
H. Doraiswamy, V. Natarajan, and R. Nanjundiah. An Exploration Framework to Identify and Track Movement of Cloud Systems. IEEE Transactions on Visualization and Computer Graphics, 19(12):2896--2905, 2013.
[10]
R. Eccles, T. Kapler, R. Harper, and W. Wright. Stories in GeoTime. In IEEE Symposium on Visual Analytics Science and Technology, pages 19--26, 2007.
[11]
H. Edelsbrunner, J. Harer, A. Mascarenhas, V. Pascucci, and J. Snoeyink. Time-varying Reeb Graphs for Continuous Space-Time Data. Computational Geometry, 41(3):149--166, 2008.
[12]
E. Gabriel, B. Rowlingson, and P. J. Diggle. stpp: An R Package for Plotting, Simulating and Analysing Spatio-Temporal Point Patterns. Journal of Statistical Software, 53(2), 2013.
[13]
P. Gatalsky, N. Andrienko, and G. Andrienko. Interactive analysis of event data using space-time cube. In Eighth International Conference on Information Visualisation, pages 145--152, 2004.
[14]
K. Goldsberry and S. Battersby. Issues of change detection in animated choropleth maps. Cartographica: The International Journal for Geographic Information and Geovisualization, 2009.
[15]
T. Hagerstrand. What about people in Regional Science? Papers of the Regional Science Association, 24(1):6--21, 1970.
[16]
F. Hardisty and A. C. Robinson. The geoviz toolkit: using component-oriented coordination methods for geographic visualization and analysis. International Journal of Geographical Information Science, pages 191--210, 2011.
[17]
M. Harrower. The cognitive limits of animated maps. Cartographica: The International Journal for Geographic Information and Geovisualization, 2009.
[18]
T. Hengl, P. Roudier, D. Beaudette, and E. Pebesma. plotKML: Scientific Visualization of Spatio-temporal Data. Journal of Statistical Software, pages 1--23, 2014.
[19]
G. Ji, H.-W. Shen, and R. Wenger. Volume Tracking Using Higher Dimensional Isosurfacing. In Proceedings of the 14th IEEE Visualization, pages 28--, Washington, DC, USA, 2003. IEEE Computer Society.
[20]
M. Kraak. The space-time cube revisited from a geovisualization perspective. pages 1988--1996, 2003.
[21]
R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouzzani, W. S. Cleveland, S. J. Grannist, and D. S. Ebert. A Visual Analytics Approach to Understanding Spatiotemporal Hotspots. IEEE Transactions on Visualization and Computer Graphics, 2009.
[22]
A. Malik, R. Maciejewski, S. Towers, S. McCullough, and D. S. Ebert. Proactive Spatiotemporal Resource Allocation and Predictive Visual Analytics for Community Policing and Law Enforcement. IEEE Transactions on Visualization and Computer Graphics, 2014.
[23]
A. Mascarenhas and J. Snoeyink. Isocontour based Visualization of Time-varying Scalar Fields. In Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration, Mathematics and Visualization, pages 41--68. Springer Berlin Heidelberg, 2009.
[24]
C. Minard. Des tableaux graphiques et des cartes figuratives. Thunot, 1862.
[25]
T. Nakaya and K. Yano. Visualising Crime Clusters in a Space-time Cube: An Exploratory Data-analysis Approach Using Space-time Kernel Density Estimation and Scan Statistics. Transactions in GIS, 14(3):223--239, 2010.
[26]
P. Oesterling, C. Heine, H. Janicke, G. Scheuermann, and G. Heyer. Visualization of High-Dimensional Point Clouds Using Their Density Distribution's Topology. IEEE Transactions on Visualization and Computer Graphics, 17(11):1547--1559, 2011.
[27]
S. Peters and L. Meng. Spatio Temporal Density Mapping of a Dynamic Phenomenon. In GEOProcessing 2014. Department of Cartography - Technische Universitaet Muenchen, 2014.
[28]
D. J. Peuquet and M.-J. Kraak. Geobrowsing: Creative Thinking and Knowledge Discovery Using Geographic Visualization. Information Visualization, 1(1):80--91, 2002.
[29]
R. Samtaney, D. Silver, N. Zabusky, and J. Cao. Visualizing Features and Tracking Their Evolution. Computer, 27(7):20--27, 1994.
[30]
R. Scheepens, N. Willems, H. van de Wetering, and J. van Wijk. Interactive density maps for moving objects. Computer Graphics and Applications, IEEE, 32(1):56--66, 2012.
[31]
A. Shrestha, B. Miller, Y. Zhu, and Y. Zhao. Storygraph: Extracting Patterns from Spatio-temporal Data. In Proceedings of the ACM SIGKDD Workshop on Interactive Data Exploration and Analytics, pages 95--103. ACM, 2013.
[32]
D. Silver and X. Wang. Tracking and visualizing turbulent 3D features. IEEE Transactions on Visualization and Computer Graphics, 3(2):129--141, 1997.
[33]
United States Department of Agriculture (USDA). Foot-and-Mouth Disease Response Plan, 2014.
[34]
G. Weber, P.-T. Bremer, M. Day, J. Bell, and V. Pascucci. Feature Tracking Using Reeb Graphs. In Topological Methods in Data Analysis and Visualization, pages 241--253. Springer Berlin Heidelberg, 2011.
[35]
W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci. Interactive exploration of large-scale time-varying data using dynamic tracking graphs. In IEEE Symposium on Large Data Analysis and Visualization, pages 9--17, 2012.

Cited By

View all
  • (2024)A Visual Analytic Platform for Interactive Validation of Human Mobility SimulationsProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698570(1-10)Online publication date: 29-Oct-2024
  • (2024) MetroBUX: A Topology-Based Visual Analytics for B us Operational U ncertainty E X ploration IEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.333870025:6(5525-5538)Online publication date: Jun-2024
  • (2024)Geo-topological Visualization of Landscapes and LandformsGeo-Topology10.1007/978-3-031-48185-7_6(67-80)Online publication date: 6-Jan-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '15: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2015
646 pages
ISBN:9781450339674
DOI:10.1145/2820783
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 November 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. density estimation
  2. geovisualization
  3. hotspots
  4. reeb graph
  5. spatio-temporal event data
  6. topology

Qualifiers

  • Research-article

Funding Sources

  • NSF

Conference

SIGSPATIAL'15
Sponsor:

Acceptance Rates

SIGSPATIAL '15 Paper Acceptance Rate 38 of 212 submissions, 18%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)39
  • Downloads (Last 6 weeks)4
Reflects downloads up to 23 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Visual Analytic Platform for Interactive Validation of Human Mobility SimulationsProceedings of the 7th ACM SIGSPATIAL International Workshop on GeoSpatial Simulation10.1145/3681770.3698570(1-10)Online publication date: 29-Oct-2024
  • (2024) MetroBUX: A Topology-Based Visual Analytics for B us Operational U ncertainty E X ploration IEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.333870025:6(5525-5538)Online publication date: Jun-2024
  • (2024)Geo-topological Visualization of Landscapes and LandformsGeo-Topology10.1007/978-3-031-48185-7_6(67-80)Online publication date: 6-Jan-2024
  • (2023)A cyclically adjusted spatio-temporal kernel density estimation method for predictive crime hotspot analysisAnnals of GIS10.1080/19475683.2023.216658429:2(177-191)Online publication date: 11-Jan-2023
  • (2022)SWSProceedings of the VLDB Endowment10.14778/3503585.350359115:4(814-827)Online publication date: 14-Apr-2022
  • (2022)DDLVis: Real-time Visual Query of Spatiotemporal Data Distribution via Density Dictionary LearningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311476228:1(1062-1072)Online publication date: Jan-2022
  • (2022)A survey of urban visual analytics: Advances and future directionsComputational Visual Media10.1007/s41095-022-0275-79:1(3-39)Online publication date: 18-Oct-2022
  • (2022)User-centered visual explorer of in-process comparison in spatiotemporal spaceJournal of Visualization10.1007/s12650-022-00882-326:2(403-421)Online publication date: 9-Nov-2022
  • (2021)Exploring geographic hotspots using topological data analysisTransactions in GIS10.1111/tgis.1281625:6(3188-3209)Online publication date: 13-Aug-2021
  • (2021)Time-Varying Fuzzy Contour Trees2021 IEEE Visualization Conference (VIS)10.1109/VIS49827.2021.9623286(86-90)Online publication date: Oct-2021
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media