Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2820783.2820845acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
short-paper

Spatio-temporal keyword queries for moving objects

Published: 03 November 2015 Publication History

Abstract

Many applications involve queries that combine spatial, temporal and textual filters. In this paper, we address the problem of efficient evaluation of queries that perform spatial, temporal and keyword-based filtering on historical movement data of objects which are additionally associated with textual information in the form of keywords. Our work combines and builds upon concepts and techniques for spatio-temporal and spatio-textual queries, proposing two hybrid indexes for this purpose. An experimental evaluation of the proposed approaches is presented, using real-world datasets from two different types of sources.

References

[1]
V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory data sets with SETI. In CIDR, 2003.
[2]
L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query processing: An experimental evaluation. PVLDB, 6(3):217--228, 2013.
[3]
M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs. space: efficient geo-search query processing. In CIKM, pages 423--432, 2011.
[4]
G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang. Efficient spatial keyword search in trajectory databases. CoRR, abs/1205.2880, 2012.
[5]
Y. Han, L. Wang, Y. Zhang, W. Zhang, and X. Lin. Spatial keyword range search on trajectories. In DASFAA, pages 223--240, 2015.
[6]
R. Hariharan, B. Hore, C. Li, and S. Mehrotra. Processing spatial-keyword (SK) queries in geographic information retrieval (GIR) systems. In SSDBM, page 16, 2007.
[7]
M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods. IEEE Data Eng. Bull., 26(2):40--49, 2003.
[8]
S. Nepomnyachiy, B. Gelley, W. Jiang, and T. Minkus. What, where, and when: keyword search with spatio-temporal ranges. In GIR, pages 2:1--2:8, 2014.
[9]
L. Nguyen-Dinh, W. G. Aref, and M. F. Mokbel. Spatio-temporal access methods: Part 2 (2003--2010). IEEE Data Eng. Bull., 33(2):46--55, 2010.
[10]
B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li. The new data and new challenges in multimedia research. arXiv preprint arXiv:1503.01817, 2015.

Cited By

View all
  • (2023)Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword QueriesProceedings of the ACM on Management of Data10.1145/35886911:1(1-25)Online publication date: 30-May-2023
  • (2023)Blockchain search engine: Its current research status and future prospect in Internet of Things networkFuture Generation Computer Systems10.1016/j.future.2022.08.008138(120-141)Online publication date: Jan-2023
  • (2023)Keywords Query of uncertain spatiotemporal data based on XMLEarth Science Informatics10.1007/s12145-023-00934-816:1(241-257)Online publication date: 13-Jan-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
SIGSPATIAL '15: Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems
November 2015
646 pages
ISBN:9781450339674
DOI:10.1145/2820783
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 03 November 2015

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. moving objects
  2. spatio-temporal search
  3. spatio-textual search

Qualifiers

  • Short-paper

Conference

SIGSPATIAL'15
Sponsor:

Acceptance Rates

SIGSPATIAL '15 Paper Acceptance Rate 38 of 212 submissions, 18%;
Overall Acceptance Rate 257 of 1,238 submissions, 21%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)1
Reflects downloads up to 08 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Effectiveness Perspectives and a Deep Relevance Model for Spatial Keyword QueriesProceedings of the ACM on Management of Data10.1145/35886911:1(1-25)Online publication date: 30-May-2023
  • (2023)Blockchain search engine: Its current research status and future prospect in Internet of Things networkFuture Generation Computer Systems10.1016/j.future.2022.08.008138(120-141)Online publication date: Jan-2023
  • (2023)Keywords Query of uncertain spatiotemporal data based on XMLEarth Science Informatics10.1007/s12145-023-00934-816:1(241-257)Online publication date: 13-Jan-2023
  • (2022)Spatial Concept Query Based on Lattice-TreeISPRS International Journal of Geo-Information10.3390/ijgi1105031211:5(312)Online publication date: 15-May-2022
  • (2022)Social Spatio-temporal Keyword Pattern (S²KP) Queries in Multiple Aspect Trajectories DatabasesProceedings of the 34th International Conference on Scientific and Statistical Database Management10.1145/3538712.3538716(1-12)Online publication date: 6-Jul-2022
  • (2022)MAT‐Index: An index for fast multiple aspect trajectory similarity measuringTransactions in GIS10.1111/tgis.1288926:2(691-716)Online publication date: 20-Jan-2022
  • (2021)Location- and keyword-based querying of geo-textual data: a surveyThe VLDB Journal — The International Journal on Very Large Data Bases10.1007/s00778-021-00661-w30:4(603-640)Online publication date: 30-Mar-2021
  • (2020)Using Collaborative Edge-Cloud Cache for Search in Internet of ThingsIEEE Internet of Things Journal10.1109/JIOT.2019.29463897:2(922-936)Online publication date: Feb-2020
  • (2020)Efficient Search for Moving Object Devices in Internet of Things Networks2020 IEEE International Conference on Web Services (ICWS)10.1109/ICWS49710.2020.00067(454-462)Online publication date: Oct-2020
  • (2019)SMPKR: Search Engine for Internet of ThingsIEEE Access10.1109/ACCESS.2019.29523907(163615-163625)Online publication date: 2019
  • Show More Cited By

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media