Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure

Published: 10 May 2016 Publication History

Abstract

We present a structured parallel geometry-based multifrontal sparse solver using hierarchically semiseparable (HSS) representations and exploiting the inherent low-rank structures. Parallel strategies for nested dissection ordering (taking low rankness into account), symbolic factorization, and structured numerical factorization are shown. In particular, we demonstrate how to manage two layers of tree parallelism to integrate parallel HSS operations within the parallel multifrontal sparse factorization. Such a structured multifrontal factorization algorithm can be shown to have asymptotically lower complexities in both operation counts and memory than the conventional factorization algorithms for certain partial differential equations. We present numerical results from the solution of the anisotropic Helmholtz equations for seismic imaging, and demonstrate that our new solver was able to solve 3D problems up to 6003 mesh size, with 216M degrees of freedom in the linear system. For this specific model problem, our solver is both faster and more memory efficient than a geometry-based multifrontal solver (which is further faster than general-purpose algebraic solvers such as MUMPS and SuperLU_DIST). For the 6003 mesh size, the structured factors from our solver need about 5.9 times less memory.

References

[1]
P. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J-Y. L'Excellent, and C. Weisbecker. 2015. Improving multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37, 3 (2015), A1451--A1474. http://dx.doi.org/10.1137/120903476
[2]
P. R. Amestoy, A. Guermouche, J.-Y. L'Excellent, and S. Pralet. 2006. Hybrid scheduling for the parallel solution of linear systems. Parallel Comput. 32, 2 (2006), 136--156.
[3]
A. Aminfar, S. Ambikasaran, and E. Darve. 2014. A fast block low-rank dense solver with applications to finite-element matrices. CoRR abs/1403.5337 (2014).
[4]
A. Aminfar and E. Darve. 2014. A fast sparse solver for finite-element matrices. CoRR abs/1410.2697 (2014). http://arxiv.org/abs/1410.2697
[5]
M. Bebendorf and W. Hackbusch. 2003. Existence of H-matrix approximants to the inverse FE-matrix of elliptic operators with L<sup>∞</sup> coefficients. Numer. Math. 95 (2003), 1--28.
[6]
T. Bella, Y. Eidelman, I. Gohberg, and V. Olshevsky. 2008. Computations with quasiseparable polynomials and matrices. Theoret. Comput. Sci. 409 (2008), 158--179.
[7]
L. S. Blackford, J. Choi, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. 1997. ScaLAPACK Users' Guide. SIAM, Philadelphia.
[8]
S. Börm, L. Grasedyck, and W. Hackbusch. 2003. Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem 27 (2003), 405--422.
[9]
S. Börm and W. Hackbusch. 2001. Data-sparse approximation by adaptive H<sup>2</sup>-matrices. Technical Report, Leipzig, Germany: Max Planck Institute for Mathematics 86 (2001).
[10]
S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White. 2005. Some fast algorithms for sequentially semiseparable representations. SIAM J. Matrix Anal. Appl. 27 (2005), 341--364.
[11]
S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam. 2010. On the numerical rank of the off-diagonal blocks of Schur complements of discretized elliptic PDEs. SIAM J. Matrix Anal. Appl. 31 (2010), 2261--2290.
[12]
S. Chandrasekaran, M. Gu, and T. Pals. 2006. A fast ULV decomposition solver for hierarchically semiseparable representations. SIAM J. Matrix Anal. Appl. 28 (2006), 603--622.
[13]
J. Dongarra and R. C. Whaley. 1997. A User's Guide to the BLACS v1.1. LAPACK Working Note #94. http://www.netlib.org/blacs.
[14]
I. S. Duff and J. K. Reid. 1983. The multifrontal solution of indefinite sparse symmetric linear equations. ACM Trans. Math. Software 9 (1983), 302--325.
[15]
Y. Eidelman and I. Gohberg. 1999. On a new class of structured matrices. Integr. Equat. Operat. Theor. 34 (1999), 293--324.
[16]
B. Engquist and L. Ying. 2011. Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation. Commun. Pure Appl. Math. 64 (2011), 697--735.
[17]
K. Fuerlinger, N. J. Wright, and D. Skinner. 2010. Effective performance measurement at petascale using IPM. In 2010 IEEE 16th International Conference on Parallel and Distributed Systems (ICPADS'10). IEEE, 373--380.
[18]
J. A. George. 1973. Nested dissection of a regular finite element mesh. SIAM J. Numer. Anal. 10 (1973), 345--363.
[19]
W. Hackbusch. 1999. A sparse matrix arithmetic based on H-matrices. Part I: Introduction to H-matrices. Computing 62 (1999), 89--108.
[20]
W. Hackbusch, L. Grasedyck, and S. Börm. 2002. An introduction to hierarchical matrices. Math. Bohem. 127 (2002), 229--241.
[21]
W. Hackbusch, B. Khoromskij, and S. A. Sauter. 2000. On H<sup>2</sup>-matrices. Lectures on Applied Mathematics (Munich, 1999). Springer, Berlin (2000), 9--29.
[22]
W. Hackbusch and B. N. Khoromskij. 2000. A sparse H-matrix arithmetic. Part-II: Application to multi-dimensional problems. Computing 64 (2000), 21--47.
[23]
R. Li and Y. Saad. 2013. Divide and conquer low-rank preconditioners for symmetric matrices. SIAM J. Sci. Comput. 35, 4 (2013), A2069--A2095.
[24]
X. S. Li and J. W. Demmel. 2003. SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Software 29, 2 (June 2003), 110--140.
[25]
J. W. H. Liu. 1990. The role of elimination trees in sparse factorization. SIAM J. Matrix Anal. Appl. 18 (1990), 134--172.
[26]
J. W. H. Liu. 1992. The multifrontal method for sparse matrix solution: Theory and practice. SIAM Rev. 34 (1992), 82--109.
[27]
P. G. Martinsson. 2011. A fast direct solver for a class of elliptic partial differential equations. J. Sci. Comput. 38, 3 (2011), 316--330.
[28]
G. M. Morton. 1966. A computer oriented geodetic data base; and a new technique in file sequencing. Technical Report, Ottawa, Canada: IBM (1966).
[29]
W. Oettli and W. Prager. 1964. Compatibility of approximate solution of linear equations with given error bounds for coefficients and right hand sides. Num. Math. 6 (1964), 405--409.
[30]
R. Vandebril, M. Van Barel, G. Golub, and N. Mastronardi. 2005. A bibliography on semiseparable matrices. Calcolo 42 (2005), 249--270.
[31]
S. Wang, M. V. De Hoop, and J. Xia. 2010. Seismic inverse scattering via Helmholtz operator factorization and optimization. J. Computat. Phys. 229 (2010), 8445--8462.
[32]
S. Wang, M. V. de Hoop, and J. Xia. 2011. On 3d modeling of seismic wave propagation via a structured massively parallel multifrontal direct Helmholtz solver. Geophys. Prospect. 59 (2011), 857--873.
[33]
S. Wang, M. V. de Hoop, J. Xia, and X. S. Li. 2012. Massively parallel structured multifrontal solver for time-harmonic elastic waves in 3D anisotropic media. Geophys. J. Int. 91 (2012), 346--366.
[34]
S. Wang, X. S. Li, J. Xia, Y. Situ, and M. V. de Hoop. 2013. Efficient scalable algorithms for solving linear systems with hierarchically semiseparable structures. SIAM J. Sci. Comput. 35, 6 (2013), C519--C544.
[35]
C. Weisbecker. 2013. Improving Multifrontal Methods by Means of Algebraic Block Low-Rank Representations. Ph.D. Dissertation. Institut National Polytechnique de Toulouse.
[36]
J. Xia. 2012. On the complexity of some hierarchical structured matrix algorithms. SIAM J. Matrix Anal. Appl. 33 (2012), 388--410.
[37]
J. Xia. 2013. Efficient structured multifrontal factorization for general large sparse matrices. SIAM J. Sci. Comput. 35, 2 (2013), A832--A860.
[38]
J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. 2009. Superfast multifrontal method for large structured linear systems of equations. SIAM J. Matrix Anal. Appl. 31 (2009), 1382--1411.
[39]
J. Xia, S. Chandrasekaran, M. Gu, and X. S. Li. 2010. Fast algorithms for hierarchically semiseparable matrices. Numer. Linear Algebra Appl. 2010 (2010), 953--976.
[40]
Z. Xin, J. Xia, M. V. de Hoop, S. Cauley, and V. Balakrishnan. 2013. A structured multifrontal method for nonsymmetric sparse matrices and its applications. Purdue GMIG Report (April 2013).

Cited By

View all
  • (2021)Sparse Approximate Multifrontal Factorization with Butterfly Compression for High-Frequency Wave EquationsSIAM Journal on Scientific Computing10.1137/20M1349667(S367-S391)Online publication date: 22-Jun-2021
  • (2021)Robust and Effective eSIF Preconditioning for General Dense SPD MatricesSIAM Journal on Scientific Computing10.1137/20M1349540(S767-S790)Online publication date: 13-Sep-2021
  • (2021)Parallel Skeletonization for Integral Equations in Evolving Multiply-Connected DomainsSIAM Journal on Scientific Computing10.1137/20M131633043:3(A2320-A2351)Online publication date: 24-Jun-2021
  • Show More Cited By

Index Terms

  1. A Parallel Geometric Multifrontal Solver Using Hierarchically Semiseparable Structure

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 42, Issue 3
    June 2016
    208 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/2935754
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 10 May 2016
    Accepted: 01 September 2015
    Revised: 01 September 2015
    Received: 01 August 2013
    Published in TOMS Volume 42, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. HSS matrices
    2. Sparse Gaussian elimination
    3. multifrontal method
    4. parallel algorithm

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSF CAREER
    • U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research (and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics)
    • Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
    • Scientific Discovery through Advanced Computing (SciDAC)
    • NSF
    • Geo-Mathematical Imaging Group (GMIG) at Purdue University, BGP, ConocoPhillips, ExxonMobil, PGS, Statoil and Total
    • National Energy Research Scientific Computing Center

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)11
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Nov 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Sparse Approximate Multifrontal Factorization with Butterfly Compression for High-Frequency Wave EquationsSIAM Journal on Scientific Computing10.1137/20M1349667(S367-S391)Online publication date: 22-Jun-2021
    • (2021)Robust and Effective eSIF Preconditioning for General Dense SPD MatricesSIAM Journal on Scientific Computing10.1137/20M1349540(S767-S790)Online publication date: 13-Sep-2021
    • (2021)Parallel Skeletonization for Integral Equations in Evolving Multiply-Connected DomainsSIAM Journal on Scientific Computing10.1137/20M131633043:3(A2320-A2351)Online publication date: 24-Jun-2021
    • (2020)hm-toolbox: MATLAB Software for HODLR and HSS MatricesSIAM Journal on Scientific Computing10.1137/19M128804842:2(C43-C68)Online publication date: 8-Apr-2020
    • (2020)On the application of recursive bisection and nested dissection reorderings for solving fractional diffusion problems using HSS compressionAPPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’2010.1063/5.0034506(120008)Online publication date: 2020
    • (2019)An Additive Overlapping Domain Decomposition Method for the Helmholtz EquationSIAM Journal on Scientific Computing10.1137/18M119617041:2(A1252-A1277)Online publication date: 25-Apr-2019
    • (2018)A Preconditioned Finite Element Solution of the Coupled Pressure-Temperature Equations Used to Model Trace Gas SensorsSIAM Journal on Scientific Computing10.1137/17M114582340:5(B1470-B1493)Online publication date: 30-Oct-2018
    • (2018)A distributed-memory hierarchical solver for general sparse linear systemsParallel Computing10.1016/j.parco.2017.12.00474:C(49-64)Online publication date: 1-May-2018
    • (2018)Sparse supernodal solver using block low-rank compression: Design, performance and analysisJournal of Computational Science10.1016/j.jocs.2018.06.00727(255-270)Online publication date: Jul-2018
    • (2018)Parallel accelerated cyclic reduction preconditioner for three-dimensional elliptic PDEs with variable coefficientsJournal of Computational and Applied Mathematics10.1016/j.cam.2017.11.035344(760-781)Online publication date: Dec-2018
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media