Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2835022.2835031acmconferencesArticle/Chapter ViewAbstractPublication PagesgisConference Proceedingsconference-collections
research-article

An integrative method for mapping urban land use change using "geo-sensor" data

Published: 03 November 2015 Publication History

Abstract

Due to lack of high-resolution data both in space and time, mapping land use change in built-up areas remain challenging. In this work, we developed an approach that integrates multiple "geo-sensor" data sources, including remote sensing and social media, for mapping urban land use changes. The approach starts by mapping built-up expansion annually in small patches, using dense time periods of remotely sensed imagery. We refine these patches and identify the major categories of land use such as residential, commercial, manufacturing, recreational, and office. We further select one major category---residential---and use social media data and house trading records to classify it into three sub-categories: gated communities, ordinary communities, and urban slums. We demonstrate our approach using the multi-sourced data of Kunming, a medium-sized city in China. The results showed that our approach provides an efficient and integrative way for mapping large-scale land use change in urban regions with significant details that are not feasible only with limited remote sensing data.

References

[1]
Angel, S., J. Parent, D. L. Civco, A.Blei, and D. Potere. 2011. The dimensions of global urban expansion: Estimates and projections for all countries, 2000-2050. Prog Plann 75(2), 53--107.
[2]
Arsanjani, J. J., M. Helbich, M. Bakillah, J. Hagenauer, and A. Zipf. 2013. Toward mapping land-use patterns from volunteered geographic information. Int J Geogr Inf Sci 27(12), 2264--2278.
[3]
Cai, M. 2012. Land for welfare in China. In American Political Science Association Annual Meeting. (September 2012).
[4]
CNNIC, 2015, 36th Statistical Report on Internet Development in China, http://www.cac.gov.cn/2015-07/23/c_1116018119.htm
[5]
Crandall, D. J., Backstrom, L., Cosley, D., Suri, S., Huttenlocher, D., & Kleinberg, J. (2010). Inferring social ties from geographic coincidences. P Natl Acad Sci, 107(52), 22436--22441.
[6]
Dietterich, T. G. 2000. Ensemble methods in machine learning. In Multiple classifier systems 1-15. Springer Berlin Heidelberg.
[7]
El Araby, M. 2006. Urban growth and environmental degradation: The case of Cairo, Egypt. Cities, 19(6), 389--400.
[8]
Galford, G. L., J. F. Mustard, J. Melillo, A. Gendrin, C. C. Cerri, and C. E. Cerri. 2008. Wavelet analysis of MODIS time series to detect expansion and intensification of row-crop agriculture in Brazil. Remote Sens Environ 112(2), 576--587.
[9]
Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. An assessment of support vector machines for land cover classification. Int J Remote Sens 23(4), 725--749.
[10]
Huang, C., S. N. Goward, J. G. Masek, N. Thomas, Z. Zhu, and J. E. Vogelmann. 2010. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ 114(1), 183--198.
[11]
Kunming Statistical Bureau. 2014. Kunming Statistical Yearbook 2013. Beijing: China Statistics Publishing House.
[12]
Lambin, E. F., Turner, B. L., Geist,H. J., Agbola, S. B., Angelsen, A., Bruce, J. W., et al. 2001. The causes of land-use and land-cover change: moving beyond the myths. Global Environ Chang, 11(4), 261--269.
[13]
Millward, S. 2014. Tencent hits the road (and goes off the beaten path) to create China's biggest 'street view'. Accessed January 25, 2015. http://www.techinasia.com/Tencent-maps-covers-china-street-view/
[14]
Montgomery, M. R. 2008. The urban transformation of the developing world. Science, 319(5864), 761--764.
[15]
Mountrakis, G., J. Im, and C. Ogole. 2011. Support vector machines in remote sensing: A review. ISPRS J Photogramm 66(3), 247--259.
[16]
Potere, D. 2008. Horizontal positional accuracy of Google Earth's high-resolution imagery archive. Sensors, 8(12), 7973--7981.
[17]
Schneider, A., C. Chang, and K. Paulsen. 2015. The changing spatial form of cities in Western China. Landscape Urban Plan, 135, 40--61.
[18]
Seto, K. C., and J. M. Shepherd. 2009. Global urban land-use trends and climate impacts. Current Opinion in Environmental Sustainability 1(1), 89--95.
[19]
Shepherd, J. M. 2005. A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact, 9(12), 1--27.
[20]
Sherman, R., R. Mullen, L. Haomin, F. Zhendong, and W. Yi. 2008. Spatial patterns of plant diversity and communities in Alpine ecosystems of the Hengduan Mountains, northwest Yunnan, China. J Plant Ecol 1(2), 117--136.
[21]
Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. 2006. Hierarchical dirichlet processes. J Am Stat Assoc, 101(476).
[22]
Tencent Corporation, 2014. The developer's guidance of Tencent map. {in Chinese} Accessed January 25, 2015. http://open.map.qq.com/doc/guide-map.html
[23]
UN-Habitat. 2004. The challenge of slums: global report on human settlements 2003. Management of Environmental Quality: An International Journal 15, 337--338.
[24]
Xu, J., R. Tao, Z. Xu, and M. T. Bennett. 2010. China's sloping land conversion program: does expansion equal success? Land econ 86(2), 219--244.
[25]
Yuan, F., Sawaya, K. E., Loeffelholz, B. C., & Bauer, M. E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens Environ, 98(2), 317--328.
[26]
Zandbergen, P. A., and S. J. Barbeau. 2011. Positional accuracy of assisted GPS data from high-sensitivity GPS-enabled mobile phones. J Navigation 64(3), 381--399.
[27]
Zhang, L. 2012. In search of paradise: Middle-class living in a Chinese metropolis. Ithaca: Cornell University Press.
[28]
Zhou, L., Bao, M., Yang, N., Lao, Y., Zhang, Y., & Tian, Y. 2013. Spatio-temporal analysis of weibo check-in data based on spatial data warehouse. In Geo-Informatics in Resource Management and Sustainable Ecosystem 466--479. Springer Berlin Heidelberg.

Cited By

View all
  • (2021)Decision-Level and Feature-Level Integration of Remote Sensing and Geospatial Big Data for Urban Land Use MappingRemote Sensing10.3390/rs1308157913:8(1579)Online publication date: 19-Apr-2021
  • (2020)A Data Driven Approach to Study the Social and Political Statuses of Urban Communities in KunmingJournal of Chinese History10.1017/jch.2019.42(1-21)Online publication date: 21-Apr-2020
  • (2017)Integrating Geospatial Techniques for Urban Land Use Classification in the Developing Sub-Saharan African City of Lusaka, ZambiaISPRS International Journal of Geo-Information10.3390/ijgi60401026:4(102)Online publication date: 30-Mar-2017

Index Terms

  1. An integrative method for mapping urban land use change using "geo-sensor" data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    UrbanGIS'15: Proceedings of the 1st International ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics
    November 2015
    128 pages
    ISBN:9781450339735
    DOI:10.1145/2835022
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    In-Cooperation

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 November 2015

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Urban land use change
    2. big data large-scale mapping
    3. integrative method
    4. remote sensing

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Conference

    SIGSPATIAL'15
    Sponsor:

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)5
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Decision-Level and Feature-Level Integration of Remote Sensing and Geospatial Big Data for Urban Land Use MappingRemote Sensing10.3390/rs1308157913:8(1579)Online publication date: 19-Apr-2021
    • (2020)A Data Driven Approach to Study the Social and Political Statuses of Urban Communities in KunmingJournal of Chinese History10.1017/jch.2019.42(1-21)Online publication date: 21-Apr-2020
    • (2017)Integrating Geospatial Techniques for Urban Land Use Classification in the Developing Sub-Saharan African City of Lusaka, ZambiaISPRS International Journal of Geo-Information10.3390/ijgi60401026:4(102)Online publication date: 30-Mar-2017

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media