Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

Indoor Positioning Using Visible LED Lights: A Survey

Published: 21 November 2015 Publication History

Abstract

Visible light LEDs, due to their numerous advantages, are expected to become the dominant indoor lighting technology. These lights can also be switched ON/OFF at high frequency, enabling their additional use for wireless communication and indoor positioning. In this article, visible LED light--based indoor positioning systems are surveyed and classified into two broad categories based on the receiver structure. The basic principle and architecture of each design category, along with various position computation algorithms, are discussed and compared. Finally, several new research, implementation, commercialization, and standardization challenges are identified and highlighted for this relatively novel and interesting indoor localization technology.

References

[1]
G. Anastasi, R. Bandelloni, M. Conti, F. Delmastro, E. Gregori, and G. Mainetto. 2003. Experimenting an indoor Bluetooth-based positioning service. In Proceedings of the Distributed Computing Systems Workshops. 480--483.
[2]
A. Arafa, X. Jin, D. Guerrero, R. Klukas, and J. F. Holzman. 2013. Imaging sensors for optical wireless location technology. In Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS--rsquo;13). 1020--1023.
[3]
A. Arafa, R. Klukas, J. F. Holzman, and X. Jin. 2012. Towards a practical indoor lighting positioning system. In Proceedings of the International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS--rsquo;12). 2450--2453.
[4]
J. Armstrong, Y. Sekercioglu, and A. Neild. 2013. Visible light positioning; A roadmap for international standardization. IEEE Communications Magazine 51, 12, 68--73.
[5]
M. Azizyan, I. Constandache, and R. R. Choudhury. 2009. SurroundSense: Mobile phone localization via ambience fingerprinting. In Proceedings of the ACM Annual International Conference on Mobile Computing and Networking (MobiCom--rsquo;09). ACM, New York, NY, 261--272.
[6]
A. Baniukevic, D. Sabonis, C. S. Jensen, and H, Lu. 2011. Improving Wi-Fi based indoor positioning using Bluetooth add-ons. In Proceedings of the 12th III International Conference on Mobile Data Management (MDM--rsquo;11), Vol. 1. IEEE, Los Alamitos, CA, 246--255.
[7]
M. S. Bargh and R. de Groote. 2008. Indoor localization based on response rate of Bluetooth inquiries. In Proceedings of the ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT--rsquo;08). ACM, New York, NY, 49--54.
[8]
A. Bozkurt, K. Ozsoy, and I. Tekin. 2013. Indoor positioning based on global positioning system signals. Microwave and Optical Technology Letters 55, 5, 1091--1097.
[9]
J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman. 2011. Indoor location sensing using geo-magnetism. In Proceedings of the International Conference on Mobile Systems, Applications, and Services. 141--154.
[10]
A. G. Dempster. 2006. Dilution of precision in angle-of-arrival positioning systems. Electronics Letters 42, 5, 291--292.
[11]
C. Di Flora, M. Ficco, S. Russo, and V. Vecchio. 2005. Indoor and outdoor location based services for portable wireless devices. In Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops. 244--250.
[12]
J. P. Ding and Y. F. Ji. 2012. Evolutionary algorithm-based optimisation of the signal-to-noise ratio for indoor visible-light communication utilising white light-emitting diode. IET Optoelectronics 6, 6, 307--317.
[13]
T.-H. Do, J. Hwang, and M. Yoo. 2013. TDOA based indoor visible light positioning systems. In Proceedings of the 5th International Conference on Ubiquitous and Future Networks (ICUFN--rsquo;13). 456--458.
[14]
S. Fernandez, D. Gualda, J. C. Garcia, J. J. Garcia, J. Urena, and R. Gutierrez. 2011. Indoor location system based on ZigBee devices and metric description graphs. In Proceedings of the Conference on Intelligent Signal Processing (WISP--rsquo;11). 1--5.
[15]
T. J. Gallagher, B. Li, A. G. Dempster, and C. Rizos. 2010. A sector-based campus-wide indoor positioning system. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN--rsquo;10). 1--8.
[16]
M. R. Gholami, E .G. Strom, F. Sottile, D. Dardari, A. Conti, S. Gezici, M. Rydstrom, and M. A. Spirito. 2010. Static positioning using UWB range measurements. In Proceedings of the Future Network and Mobile Summit. 1--10.
[17]
D. Giustiniano and S. Mangold. 2011. CAESAR: Carrier sense-based ranging in off-the-shelf 802.11 wireless LAN. In Proceedings of the ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT--rsquo;11). ACM, New York, NY, Article No. 10.
[18]
S. Hann, J.-H. Kim, S.-Y. Jung, and C.-S. Park. 2010. White LED ceiling lights positioning systems for optical wireless indoor applications. In Proceedings of the Conference on Optical Communication (ECOC--rsquo;10). 1--3.
[19]
S. Haruyama. 2007. Japan--rsquo;s Visible Light Communications Consortium and Its Standardization Activities. Retrieved October 25, 2015, from https://mentor.ieee.org/802.15/dcn/08/15-08-0061-00-0vlc-japan-s-visible-light-communications-consortium-and-its.pdf.
[20]
S. K. Hashemi, Z. Ghassemlooy, L. Chao, and D. Benhaddou. 2008. Orthogonal frequency division multiplexing for indoor optical wireless communications using visible light LEDs. In Proceedings of the Conference on Communication Systems, Networks, and Digital Signal Processing. 174--178.
[21]
S. Hijikata, K. Terabayashi, and K. Umeda. 2009. A simple indoor self-localization system using infrared LEDs. In Proceedings of the Conference on Networked Sensing Systems (INSS--rsquo;09). 1--7.
[22]
S. Holm. 2012. Ultrasound positioning based on time-of-flight and signal strength. In Proceedings of the Conference on Indoor Positioning and Indoor Navigation (IPIN--rsquo;12). 1--6.
[23]
X. Hu, L. Cheng, and G. Zhang. 2011. A ZigBee-based localization algorithm for indoor environments. In Proceedings of the Conference on Computer Science and Network Technology (ICCSNT--rsquo;11), Vol. 3. 1776--1781.
[24]
S. J. Ingram, D. Harmer, and M. Quinlan. 2004. UltraWideBand indoor positioning systems and their use in emergencies. In Proceedings of the Position Location and Navigation Symposium. 706--715.
[25]
Jeita. 2007. JEITA Standards, AV and IT Technology Standardization. Available at http://www.jeita.or.jp.
[26]
Jeita. 2013. Standard of Japan Electronics and Information Technology Industries Association: Visible Light Beacon System. Retrieved October 24, 2015, from http://home.jeita.or.jp/tsc/std-pdf/CP1223.pdf.
[27]
E.-M. Jeong, S.-H. Yang, H.-S. Kim, and S.-K. Han. 2013. Tilted receiver angle error compensated indoor positioning system based on visible light communication. Electronics Letters 49, 14, 890--892.
[28]
M. Jevring, R. de Groote, and C. Hesselman. 2008. Dynamic optimization of Bluetooth networks for indoor localization. In Proceedings of the ACM International Conference on Soft Computing as Transdisciplinary Science and Technology (CSTST--rsquo;08). ACM, New York, NY, 663--668.
[29]
S.-Y. Jung, C.-K. Choi, S. H. Heo, S. R. Lee, and C.-S. Park. 2013. Received signal strength ratio based optical wireless indoor localization using light emitting diodes for illumination. In Proceedings of the IEEE Conference on Consumer Electronics (ICCE--rsquo;13). 63--64.
[30]
S.-Y. Jung, S. Hann, and C.-S. Park. 2011. TDOA-based optical wireless indoor localization using LED ceiling lamps. IEEE Transactions on Consumer Electronics 57, 4, 1592--1597.
[31]
S.-Y. Jung, S. Hann, S. Park, and C.-S. Park. 2012. Optical wireless indoor positioning system using light emitting diode ceiling lights. Microwave and Optical Technology Letters 54, 7, 1622--1626.
[32]
K. Kaemarungsi and P. Krishnamurthy. 2004. Properties of indoor received signal strength for WLAN location fingerprinting. In Proceedings of the Conference on Mobile and Ubiquitous Systems: Networking and Services. 14--23.
[33]
H. S. Kim, D. R. Kim, S. H. Yang, Y. H. Son, and S. K. Han. 2013. An indoor visible light communication positioning system using a RF carrier allocation technique. Journal of Lightwave Technology 31, 1, 134--144.
[34]
H. S. Kim, D. R. Kim, S.-H. Yang, Y. H. Son, and S. K. Han. 2011. Inter-cell interference mitigation and indoor positioning system based on carrier allocation visible light communication. In Proceedings of the Conference on Signal Processing and Communication Systems (ICSPCS--rsquo;11). 1--7.
[35]
J. Kwon, B. Dundar, and P. Varaiya. 2004. Hybrid algorithm for indoor positioning using wireless LAN. In Proceedings of the Conference on Vehicular Technology, Vol. 7. 4625--4629.
[36]
J. Liu, W. Noonpakdee, H. Takano, and S. Shimamoto. 2011. Evaluation of reflected light effect for indoor wireless optical CDMA system. In Proceedings of Wireless Communications and Networking Conference (WCNC--rsquo;11). IEEE, Los Alamitos, CA, 1688--1693.
[37]
G.-I. Jee and M. Petovello. 2009. GNSS solutions: Repeaters, pseudolites, and indoor positioning. InsideGNSS Magazine, 18--21.
[38]
A. Mandal, C. V. Lopes, T. Givargis, A. Haghighat, R. Jurdak, and P. Baldi. 2005. Beep: 3D indoor positioning using audible sound. In Proceedings of the Consumer Communications and Networking Conference, IEEE, Los Alamitos, CA, 348--353.
[39]
D. E. Manolakis. 1996. Efficient solution and performance analysis of 3-D position estimation by trilateration. IEEE Transactions on Aerospace and Electronic Systems 32, 4, 1239--1248.
[40]
U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen. 2015. Indoor positioning system designs using visible LED lights: Performance comparison of TDM and FDM protocols. Electronics Letters 51, 1, 72--74.
[41]
U. Nadeem, N. U. Hassan, M. A. Pasha, and C. Yuen. 2014. A highly accurate three dimensional wireless indoor positioning system using white LED lights. Electronic Letters 50, 11, 828--830.
[42]
R. Nandakumar, K. K. Chintalapudi, and V. N. Padmanabhan. 2012. Centaur: Locating devices in an office environment. In Proceedings of the ACM Annual International Conference on Mobile Computing and Networking (Mobicom--rsquo;12). ACM, New York, NY, 281--292.
[43]
D. O--rsquo;Brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel. 2008. Visible light communications: Challenges and possibilities. In Proceedings of the IEEE Conference on Personal, Indoor, and Mobile Radio Communications. 1--5.
[44]
V. Otsason, A. Varshavsky, A. LaMarca, and E. Lara. 2005. Accurate GSM indoor localization. In Ubiquitous Computing, Vol. 3660. Springer, Berlin, Germany, 141--158.
[45]
K. Panta and J. Armstrong. 2012. Indoor localisation using white LEDs. Electronics Letters 48, 4, 228--230.
[46]
C. Peng, G. Shen, Y. Zhang, Y. Li, and K. Tan. 2007. BeepBeep: A high accuracy acoustic ranging system using COTS mobile devices. In Proceedings of the ACM International Conference on Embedded Networked Sensor Systems (SenSys--rsquo;07). ACM, New York, NY, 1--14.
[47]
G. B. Prince and T. D. C. Little. 2012. A two phase hybrid RSS/AOA algorithm for indoor device localization using visible light. In Proceedings of the IEEE Global Communications Conference (GLOBECOM--rsquo;12). 3347--3352.
[48]
N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. 2000. The Cricket location-support system. In Proceedings of the ACM Annual International Conference on Mobile Computing and Networking (MobiCom--rsquo;00). ACM, New York, NY, 32--43.
[49]
M. S. Rahman, M. M. Haque, and K. D. Kim. 2011a. High precision indoor positioning using lighting LED and image sensor. In Proceedings of the Conference on Computer and Information Technology (ICCIT--rsquo;11). 309--314.
[50]
M. S. Rahman, M. M. Haque, and K. D. Kim. 2011b. Indoor positioning by LED visible light communication and image sensors. International Journal of Electrical and Computer Engineering 1, 2, 161--170.
[51]
ByteLight. 2014. GE Lighting and ByteLight Enable Retailers to Engage In-Store Connected Shoppers with Location-Based Services Using Next-Gen LED Fixtures. Retrieved October 24, 2015, from http://www.bytelight.com/press/110.
[52]
T.-P. Ren, C. Yuen, Y. L. Guan, and T. Ge-Shi. 2013. High-order intensity modulations for OSTBC in free-space optical MIMO communications. IEEE Wireless Communication Letters 2, 6, 607--610.
[53]
S. S. Saad and Z. S. Nakad. 2011. A standalone RFID indoor positioning system using passive tags. IEEE Industrial Electronics 58, 5, 1961--1970.
[54]
T. C. W. Schenk, L. Feri, H. Yang, and J. P. M. G. Linnartz. 2009. Optical wireless CDMA employing solid state lighting LEDs. In Proceedings of the IEEE/LEOS Summer Topical Meeting. 23--24.
[55]
C. Schoenegger, M. E. Wernle, and B. Stadlmann. 2008. Analysis of an UHF RFID system for interior position sensing. In Proceedings of the Conference on RFID Systems and Technologies (RFID SysTech--rsquo;08). 1--5.
[56]
R. Schulcz, G. Varga, and L. Toth. 2010. Indoor location services and context-sensitive applications in wireless networks. In Proceedings of the Conference on Indoor Positioning and Indoor Navigation (IPIN--rsquo;10). 1--10.
[57]
T. Tanaka and S. Haruyama. 2009. High-accuracy positioning system using image sensor and visible light LEDs. In Proceedings of the Conference on Machine Vision (ICMV--rsquo;09). 150--153.
[58]
A. Taparugssanagorn, S. Siwamogsatham, and C. Pomalaza-Raez. 2013. A hexagonal coverage LED-ID indoor positioning based on TDOA with extended Kalman filter. In Proceedings of the IEEE Computer Software and Applications Conference (COMPSAC--rsquo;13). 742--747.
[59]
K. Vandikas, A. Katranidou, L. Kriara, H. Baltzakis, T. Papakonstantinou, and M. Papadopouli. 2007. Empirical-based analysis of a cooperative location-sensing system. In Proceedings of the 1st International Conference on Autonomic Computing and Communication Systems. 1--11.
[60]
A. M. Vegni and M. Biagi. 2012. An indoor localization algorithm in a small-cell LED-based lighting system. In Proceedings of the Conference on Indoor Positioning and Indoor Navigation (IPIN--rsquo;12). 1--7.
[61]
J. Vongkulbhisal, B. Chantaramolee, Y. Zhao, and W. S. Mohammed. 2012. A fingerprinting-based indoor localization system using intensity modulation of light emitting diodes. Microwave and Optical Technology Letters 54, 5, 1218--1227.
[62]
B. Waldmann, R. Weigel, R. Ebelt, and M. Vossiek. 2012. An UltraWideBand local positioning system for highly complex indoor environments. In Proceedings of the Conference on Localization and GNSS (ICL-GNSS--rsquo;12). 1--5.
[63]
J. Wang, Z. Kang, and N. Zou. 2011. Research on indoor visible light communication system employing white LED lightings. In Proceedings of the Conference on Communication Technology and Application (IET--rsquo;11). 934--937.
[64]
Y. Wang, X. Yang, Y. Zhao, Y. Liu, and L. Cuthbert. 2013. Bluetooth positioning using RSSI and triangulation methods. In Proceedings of the IEEE Conference on Consumer Communications and Networking (CCNC--rsquo;13). 837--842.
[65]
R. Want, A. Hopper, V. Falcão, and J. Gibbons. 1992. The active badge location system. ACM Transactions on Information Systems 10, 1, 91--102.
[66]
J. Werb and C. Lanzl. 1998. Designing a positioning system for finding things and people indoors. IEEE Spectrum 35, 9, 71--78.
[67]
Y.-Y. Won, S.-H. Yang, D.-H. Kim, and S.-K. Han. 2013. Three-dimensional optical wireless indoor positioning system using location code map based on power distribution of visible light emitting diode. IET Optoelectronics 7, 3, 77--83.
[68]
M. Wright. 2014. Philips Lighting Demonstrates LED-Based Indoor Location Detection Technology. Retrieved October 24, 2015, from http://www.ledsmagazine.com/articles/2014/02/philips-lighting-demonstrates-led-based-indoor-location-detection-technology.html.
[69]
Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang, and X. Gao. 2004. A wireless LAN-based indoor positioning technology. IBM Journal of Research and Development 48, 5.6, 617--626.
[70]
J. Xiong and K. Jamieson. 2012. Towards fine-grained radio-based indoor location. In Proceedings of the ACM Workshop on Mobile Computing Systems and Applications (HotMobile--rsquo;12). ACM, New York, NY, Article No. 13.
[71]
Z. Xu and B. M. Sadler. 2008. Ultraviolet communications: Potential and state-of-the-art. IEEE Communications Magazine 46, 5, 67--73.
[72]
H. Yang, J. W. M. Bergmans, and T. C. W. Schenk. 2009. Illumination sensing in LED lighting systems based on frequency-division multiplexing. IEEE Transactions on Signal Processing 57, 11, 4269--4281.
[73]
S.-H. Yang, E.-M. Jeong, D.-R. Kim, H.-S. Kim, Y.-H. Son, and S.-K. Han. 2013a. Indoor three-dimensional location estimation based on LED visible light communication. Electronics Letters 49, 1, 54--56.
[74]
S.-H. Yang, E.-M. Jung, and S.-K. Han. 2013b. Indoor location estimation based on LED visible light communication using multiple optical receivers. IEEE Communications Letters 17, 9, 1834--1837.
[75]
S.-H. Yang, D.-R. Kim, H.-S. Kim, Y.-H. Son, and S.-K. Han. 2012. Indoor positioning system based on visible light using location code. In Proceedings of the Conference on Communications and Electronics (ICCE--rsquo;12). 360--363.
[76]
S.-H. Yang, D.-R. Kim, H.-S. Kim, Y.-H. Son, and S.-K. Han. 2013c. Visible light based high accuracy indoor localization using the extinction ratio distributions of light signals. Microwave and Optical Technology Letters 55, 6, 1385--1389.
[77]
Z. Yang, Z. Zhou, and Y. Liu. 2013d. From RSSI to CSI: Indoor localization via channel response. ACM Computing Surveys 46, 2, Article No. 25.
[78]
M. Yoshino, S. Haruyama, and M. Nakagawa. 2008. High-accuracy positioning system using visible LED lights and image sensor. In Proceedings of the IEEE Radio and Wireless Symposium. 439--442.
[79]
W. Zhang and M. Kavehrad. 2012. A 2-D indoor localization system based on visible light LED. In Proceedings of Photonics Society Summer Topical Meeting Series. IEEE, Los Alamitos, CA, 80--81.
[80]
D. Zheng, K. Cui, B. Bai, G. Chen, and J. A. Farrell. 2011. Indoor localization based on LEDs. In Proceedings of the IEEE Conference on Control Applications (CCA--rsquo;11). 573--578.
[81]
Z. Zhou, M. Kavehrad, and P. Deng. 2012. Indoor positioning algorithm using light-emitting diode visible light communications. Optical Engineering 51, 8, 1--6.

Cited By

View all
  • (2024)Enhancing indoor navigation in multi-terminal airports through visible light communication signalsOptical Sensing and Detection VIII10.1117/12.3016824(62)Online publication date: 20-Jun-2024
  • (2024)Efficient phase difference–based visible light positioning systemOptical Engineering10.1117/1.OE.63.7.07810163:07Online publication date: 1-Jul-2024
  • (2024)Deep Learning Based Proactive Optimization for Mobile LiFi Systems With Channel AgingIEEE Transactions on Communications10.1109/TCOMM.2024.336640572:6(3543-3557)Online publication date: Jun-2024
  • Show More Cited By

Index Terms

  1. Indoor Positioning Using Visible LED Lights: A Survey

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Computing Surveys
      ACM Computing Surveys  Volume 48, Issue 2
      November 2015
      615 pages
      ISSN:0360-0300
      EISSN:1557-7341
      DOI:10.1145/2830539
      • Editor:
      • Sartaj Sahni
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 21 November 2015
      Accepted: 01 September 2015
      Revised: 01 July 2015
      Received: 01 July 2014
      Published in CSUR Volume 48, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Indoor positioning systems
      2. cameras
      3. light-emitting diodes
      4. localization algorithms
      5. photodiodes

      Qualifiers

      • Survey
      • Research
      • Refereed

      Funding Sources

      • Lahore University of Management Sciences (LUMS) Research Startup Grant
      • Temasek Lab
      • LUMS Faculty Initiative Fund

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)108
      • Downloads (Last 6 weeks)7
      Reflects downloads up to 18 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Enhancing indoor navigation in multi-terminal airports through visible light communication signalsOptical Sensing and Detection VIII10.1117/12.3016824(62)Online publication date: 20-Jun-2024
      • (2024)Efficient phase difference–based visible light positioning systemOptical Engineering10.1117/1.OE.63.7.07810163:07Online publication date: 1-Jul-2024
      • (2024)Deep Learning Based Proactive Optimization for Mobile LiFi Systems With Channel AgingIEEE Transactions on Communications10.1109/TCOMM.2024.336640572:6(3543-3557)Online publication date: Jun-2024
      • (2024)Joint Beamformer Design and Power Allocation Method for Hybrid RF-VLCP SystemIEEE Internet of Things Journal10.1109/JIOT.2023.331643411:5(7878-7892)Online publication date: 1-Mar-2024
      • (2024)Fingerprinting Database Development Methods for Reconfigurable Intelligent Surface Assisted Indoor Positioning SystemIEEE Access10.1109/ACCESS.2024.341285412(85244-85258)Online publication date: 2024
      • (2023)Privacy-Preserving Wireless Indoor Localization SystemsKocaeli Journal of Science and Engineering10.34088/kojose.10988046:2(114-128)Online publication date: 30-Nov-2023
      • (2023)Fasys: Visible-Light-Based Communication and Positioning Services towards Smart CitiesSensors10.3390/s2314634023:14(6340)Online publication date: 12-Jul-2023
      • (2023)Evolution of Hybrid LiFi–WiFi Networks: A SurveySensors10.3390/s2309425223:9(4252)Online publication date: 25-Apr-2023
      • (2023)Comparative Analysis of Indoor Localization across Various Wireless TechnologiesEng10.3390/eng40301314:3(2293-2308)Online publication date: 8-Sep-2023
      • (2023)NLoS-VICINITY: A Non-Line of Sight Approach for Visible LIght Communication based INdoor PosITioning SYstem2023 25th International Conference on Advanced Communication Technology (ICACT)10.23919/ICACT56868.2023.10079479(89-95)Online publication date: 19-Feb-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media