Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2847263.2847302acmconferencesArticle/Chapter ViewAbstractPublication PagesfpgaConference Proceedingsconference-collections
poster

ARAPrototyper: Enabling Rapid Prototyping and Evaluation for Accelerator-Rich Architecture (Abstact Only)

Published: 21 February 2016 Publication History

Abstract

Compared to conventional general-purpose processors, accelerator-rich architectures (ARAs) can provide orders-of-magnitude performance and energy gains. In this paper we design and implement the ARAPrototyper to enable rapid design space explorations for ARAs in real silicons and reduce the tedious prototyping efforts. First, ARAPrototyper provides a reusable baseline prototype with a highly customizable memory system, including interconnect between accelerators and buffers, interconnect between buffers and last-level cache (LLC) or DRAM, coherency choice at LLC or DRAM, and address translation support. To provide more insights into performance analysis, ARAPrototyper adds several performance counters on the accelerator side and leverages existing performance counters on the CPU side. Second, ARAPrototyper provides a clean interface to quickly integrate a user?s own accelerators written in high-level synthesis (HLS) code. Then, an ARA prototype can be automatically generated and mapped to a Xilinx Zynq SoC. To quickly develop applications that run seamlessly on the ARA prototype, ARAPrototyper provides a system software stack and abstracts the accelerators as software libraries for application developers. Our results demonstrate that ARAPrototyper enables a wide range of design space explorations for ARAs at manageable prototyping efforts and 4,000 to 10,000X faster evaluation time than full-system simulations. We believe that ARAPrototyper can be an attractive alternative for ARA design and evaluation.

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
FPGA '16: Proceedings of the 2016 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
February 2016
298 pages
ISBN:9781450338561
DOI:10.1145/2847263
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 February 2016

Check for updates

Author Tags

  1. accelerator integration
  2. accelerator-rich architecture
  3. customized memory system
  4. fpga prototyping
  5. performance evaluation

Qualifiers

  • Poster

Funding Sources

  • Intel: Accelerator-Rich Architectures with Applications to Healthcare
  • NSF: Accelerator-Rich Architectures with Applications to Healthcare
  • The Center for Future Architectures Research (C-FAR)

Conference

FPGA'16
Sponsor:

Acceptance Rates

FPGA '16 Paper Acceptance Rate 20 of 111 submissions, 18%;
Overall Acceptance Rate 125 of 627 submissions, 20%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Nov 2024

Other Metrics

Citations

View Options

Get Access

Login options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media