Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2909132.2909246acmconferencesArticle/Chapter ViewAbstractPublication PagesaviConference Proceedingsconference-collections
research-article
Public Access

VISAGE: Interactive Visual Graph Querying

Published: 07 June 2016 Publication History

Abstract

Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present Visage, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) Visage guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates Visage's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) Visage works on real graphs with over 468K edges, achieving sub-second response times for common queries.

References

[1]
C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for information exploration: An implementation and evaluation. In Proc. CHI, pages 619--626. ACM, 1992.
[2]
F. Beck, M. Burch, S. Diehl, and D. Weiskopf. The state of the art in visualizing dynamic graphs. In EuroVis - STARs, pages 83--103, 2014.
[3]
S. S. Bhowmick, B. Choi, and S. Zhou. Vogue: Towards a visual interaction-aware graph query processing framework. In Proc. CIDR, 2013.
[4]
N. Cao, Y.-R. Lin, L. Li, and H. Tong. g-miner: Interactive visual group mining on multivariate graphs. In Proc. CHI, pages 279--288. ACM, 2015.
[5]
T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query systems for databases: A survey. Journal of Visual Languages & Computing, 8(2):215--260, 1997.
[6]
S. Ceri, S. Comai, P. Fraternali, S. Paraboschi, L. Tanca, and E. Damiani. Xml-gl: A graphical language for querying and restructuring xml documents. In Proc. SEBD, pages 151--165, 1999.
[7]
D. H. Chau, C. Faloutsos, H. Tong, J. I. Hong, B. Gallagher, and T. Eliassi-Rad. Graphite: A visual query system for large graphs. In Proc. ICDM, pages 963--966. IEEE, 2008.
[8]
C. Dunne and B. Shneiderman. Motif simplification: Improving network visualization readability with fan, connector, and clique glyphs. In Proc. CHI, pages 3247--3256. ACM, 2013.
[9]
N. Guarino, O. Content-based, G. Vetere, and C. Masolo. Ontoseek: Content-based access to the web. IEEE Intelligent Systems and Their Applications, 14(3):70--80, 1999.
[10]
A. Hakeem, M. W. Lee, O. Javed, and N. Haering. Semantic video search using natural language queries. In Proc. Multimedia, pages 605--608. ACM, 2009.
[11]
I. Herman, G. Melançon, and M. S. Marshall. Graph visualization and navigation in information visualization: a survey. IEEE Transactions on Visualization and Computer Graphics, 6(1):24--43, 2000.
[12]
F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. Rdf-gl: a sparql-based graphical query language for rdf. In Emergent Web Intelligence: Advanced Information Retrieval, pages 87--116. Springer, 2010.
[13]
F. Holzschuher and R. Peinl. Performance of graph query languages: comparison of cypher, gremlin and native access in neo4j. In Proc. Joint EDBT/ICDT Workshops, pages 195--204. ACM, 2013.
[14]
A. Jindal and S. Madden. Graphiql: A graph intuitive query language for relational databases. In Proc. Big Data, pages 441--450. IEEE, 2014.
[15]
K. Kaur and R. Rani. Modeling and querying data in nosql databases. In Proc. Big Data. IEEE, 2013.
[16]
H. Kim, H. F. Korth, and A. Silberschatz. Picasso: A graphical query language. Software: Practice and Experience, 18(3):169--203, 1988.
[17]
D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Vog: Summarizing and understanding large graphs. In Proc. SDM, pages 91--99. SIAM, 2014.
[18]
R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS System for Mixed Models. 2006.
[19]
D. Montag. Understanding neo4j scalability. Technical report, Neo Technology, January 2013.
[20]
W. Ni and T. W. Ling. Glass: A graphical query language for semi-structured data. In Proc. DASFAA, pages 363--370, 2003.
[21]
S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos. Netprobe: a fast and scalable system for fraud detection in online auction networks. In Proceedings of the 16th international conference on World Wide Web, pages 201--210. ACM, 2007.
[22]
R. Pienta, J. Abello, M. Kahng, and D. H. Chau. Scalable graph exploration and visualization: Sensemaking challenges and opportunities. In Proc. BigComp, pages 271--278, 2015.
[23]
R. Pienta, A. Tamersoy, H. Tong, and D. H. Chau. Mage: Matching approximate patterns in richly-attributed graphs. In Proc. Big Data. IEEE, 2014.
[24]
R. Pienta, A. Tamersoy, H. Tong, A. Endert, and D. H. P. Chau. Interactive querying over large network data: Scalability, visualization, and interaction design. In Proc. IUI, pages 61--64. ACM, 2015.
[25]
F. Schreiber and H. SchwÃűbbermeyer. Mavisto: a tool for the exploration of network motifs. Bioinformatics, 21(17):3572--3574, 2005.
[26]
B. Shneiderman. Dynamic queries for visual information seeking. IEEE Software, 11(6):70--77, 1994.
[27]
A. Tamersoy, E. Khalil, B. Xie, S. L. Lenkey, B. R. Routledge, D. H. Chau, and S. B. Navathe. Large-scale insider trading analysis: patterns and discoveries. Social Network Analysis and Mining, 4(1):1--17, 2014.
[28]
Y. Tian and J. Patel. Tale: A tool for approximate large graph matching. In Proc. ICDE. IEEE, 2008.
[29]
H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast best-effort pattern matching in large attributed graphs. In Proc. KDD, pages 737--746. ACM, 2007.
[30]
T. von Landesberger, A. Kuijper, T. Schreck, J. Kohlhammer, J. van Wijk, J.-D. Fekete, and D. Fellner. Visual analysis of large graphs: State-of-the-art and future research challenges. Computer Graphics Forum, 30(6):1719--1749, 2011.
[31]
P. C. Wong, D. Haglin, D. Gillen, D. Chavarria, V. Castellana, C. Joslyn, A. Chappell, and S. Zhang. A visual analytics paradigm enabling trillion-edge graph exploration. In Proc. LDAV. IEEE, 2015.
[32]
M. M. Zloof. Query-by-example: A data base language. IBM Systems Journal, 16(4):324--343, 1977.

Cited By

View all
  • (2024)Understanding Visual, Integrated, and Flexible Workspace for Comprehensive Literature Reviews with SketchingRelatedWorkExtended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613905.3650791(1-7)Online publication date: 11-May-2024
  • (2024)A High‐Scalability Graph Modification System for Large‐Scale NetworksComputer Graphics Forum10.1111/cgf.15191Online publication date: 16-Aug-2024
  • (2023)KGNav: A Knowledge Graph Navigational Visual Query SystemProceedings of the VLDB Endowment10.14778/3611540.361159216:12(3946-3949)Online publication date: 1-Aug-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
AVI '16: Proceedings of the International Working Conference on Advanced Visual Interfaces
June 2016
400 pages
ISBN:9781450341318
DOI:10.1145/2909132
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 07 June 2016

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Graph Querying and Mining
  2. Interaction Design
  3. Visualization

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

Conference

AVI '16

Acceptance Rates

AVI '16 Paper Acceptance Rate 20 of 96 submissions, 21%;
Overall Acceptance Rate 128 of 490 submissions, 26%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)94
  • Downloads (Last 6 weeks)12
Reflects downloads up to 12 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Understanding Visual, Integrated, and Flexible Workspace for Comprehensive Literature Reviews with SketchingRelatedWorkExtended Abstracts of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613905.3650791(1-7)Online publication date: 11-May-2024
  • (2024)A High‐Scalability Graph Modification System for Large‐Scale NetworksComputer Graphics Forum10.1111/cgf.15191Online publication date: 16-Aug-2024
  • (2023)KGNav: A Knowledge Graph Navigational Visual Query SystemProceedings of the VLDB Endowment10.14778/3611540.361159216:12(3946-3949)Online publication date: 1-Aug-2023
  • (2023)SketchingRelatedWork: Finding and Organizing Papers through Inking a Node-Link DiagramAdjunct Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology10.1145/3586182.3616685(1-3)Online publication date: 29-Oct-2023
  • (2023)Exploring Tabular Data Through NetworksAdvances in Information Retrieval10.1007/978-3-031-28241-6_13(195-200)Online publication date: 2-Apr-2023
  • (2023)The Future is Democratized GraphsPlug-and-Play Visual Subgraph Query Interfaces10.1007/978-3-031-16162-9_1(1-14)Online publication date: 14-Mar-2023
  • (2022)Interactive Visual Pattern Search on Graph Data via Graph Representation LearningIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311485728:1(335-345)Online publication date: Jan-2022
  • (2022)VERTIGo: A Visual Platform for Querying and Exploring Large Multilayer NetworksIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.306782028:3(1634-1647)Online publication date: 1-Mar-2022
  • (2021)Expert-Augmented Computational Drug Repurposing Identified Baricitinib as a Treatment for COVID-19Frontiers in Pharmacology10.3389/fphar.2021.70985612Online publication date: 28-Jul-2021
  • (2021)Visual Analysis of Multilayer NetworksSynthesis Lectures on Visualization10.2200/S01094ED1V01Y202104VIS0128:1(1-150)Online publication date: 8-Jun-2021
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media