Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2929908.2929911acmotherconferencesArticle/Chapter ViewAbstractPublication PagespascConference Proceedingsconference-collections
research-article
Open access

Performance Analysis and Optimization of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on the K Computer and TSUBAME2.5

Published: 08 June 2016 Publication History

Abstract

We summarize the optimization and performance evaluation of the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on two different types of supercomputers: the K computer and TSUBAME2.5. First, we evaluated and improved several kernels extracted from the model code on the K computer. We did not significantly change the loop and data ordering for sufficient usage of the features of the K computer, such as the hardware-aided thread barrier mechanism and the relatively high bandwidth of the memory, i.e., a 0.5 Byte/FLOP ratio. Loop optimizations and code cleaning for a reduction in memory transfer contributed to a speed-up of the model execution time. The sustained performance ratio of the main loop of the NICAM reached 0.87 PFLOPS with 81,920 nodes on the K computer. For GPU-based calculations, we applied OpenACC to the dynamical core of NICAM. The performance and scalability were evaluated using the TSUBAME2.5 supercomputer. We achieved good performance results, which showed efficient use of the memory throughput performance of the GPU as well as good weak scalability. A dry dynamical core experiment was carried out using 2560 GPUs, which achieved 60 TFLOPS of sustained performance.

References

[1]
T. Arakawa, T. Inoue, and M. Sato. Performance evaluation and case study of a coupling software ppOpen-MATH/MP. Procedia Comput. Sci., 29:924--935, 2014.
[2]
T. Arakawa, H. Yoshimura, F. Saito, and K. Ogochi. Data exchange algorithm and software design of KAKUSHIN coupler Jcup. Procedia Comput. Sci., 4:1516--1525, 2011.
[3]
K. Aranami, T. Hara, Y. Ikuta, K. Kawano, K. Matsubayashi, H. Kusabiraki, T. Ito, T. Egawa, K. Yamashita, Y. Ota, Y. Ishikawa, T. Fujita, and J. Ishida. A new operational regional model for convection-permitting numerical weather prediction at JMA. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 2015.
[4]
O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, and T. C. Schulthess. Towards a performance portable, architecture agnostic implementation strategy for weather and climate models. Supercomput. Frontiers Innov., 1(1):45--62, 2014.
[5]
W. W. Grabowski. Toward cloud resolving modeling of large-scale tropical circulations: A simple cloud microphysics parameterization. J. Atmos. Sci., 55:3283--3298, 1998.
[6]
H. Hasumi. CCSR ocean component model (COCO). CCSR Rep 13. The University of Tokyo, Chiba, Japan, 2000.
[7]
H. Hasumi. CCSR ocean component model (COCO), version 4.0. CCSR Rep 25. The University of Tokyo, Chiba, Japan, 2006.
[8]
J. Ishida, C. Muroi, and K. Kawano. Development of a new nonhydrostatic model ASUCA at JMA. CAS/JSC WGNE Research Activities in Atmospheric and Oceanic Modelling, 2010.
[9]
C. Jablonowski and D. L. Williamson. A baroclinic instability test case for atmospheric model dynamical cores. Q. J. R. Meteorol. Soc., 132(621C):2943--2975, 2007.
[10]
J. B. Klemp and R. B. Wilhelmson. The simulation of three-dimensional convective storm dynamics. J. Atmos. Sci., 35(6):1070--1096, 1978.
[11]
C. Kodama, Y. Yamada, A. T. Noda, K. Kikuchi, Y. Kajikawa, T. Nasuno, T. Tomita, T. Yamamura, H. G. Takahashi, M. Hara, Y. Kawatani, and M. Satoh. A 20-year climatology of a NICAM AMIP-type simulation. J. Meteorol. Soc. Japan, 93(4):393--424, 2015.
[12]
Y. Matsuzaki, N. Uchikoga, M. Ohue, T. Shimoda, T. Sato, T. Ishida, and Y. Akiyama. MEGADOCK 3.0: A high-performance protein-protein interaction prediction software using hybrid parallel computing for petascale supercomputing environments. Source Code Biol. Med., 8(1):18, 2013.
[13]
H. Miura, M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318(5857):1763--1765, 2007.
[14]
Y. Miyamoto, Y. Kajikawa, R. Yoshida, T. Yamaura, H. Yashiro, and H. Tomita. Deep moist atmospheric convection in a subkilometer global simulation. Geophys. Res. Lett., 40(18):4922--4926, 2013.
[15]
M. Nakanishi and H. Niino. An improved Mellor--Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteorol., 119(2):397--407, 2006.
[16]
M. Nakanishi and H. Niino. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteorol. Soc. Japan, 87(5):895--912, 2009.
[17]
A. T. Noda, K. Oouchi, M. Satoh, H. Tomita, S. Iga, and Y. Tsushima. Importance of the subgrid-scale turbulent moist process: Cloud distribution in global cloud-resolving simulations. Atmos. Res., 96(2--3):208--217, 2010.
[18]
M. Satoh. Conservative scheme for the compressible nonhydrostatic models with the horizontally explicit and vertically implicit time integration scheme. Mon. Wea. Rev., 130(5):1227--1245, 2002.
[19]
M. Satoh. Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev., 131(6):1033--1050, 2003.
[20]
M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227(7):3486--3514, 2008.
[21]
M. Satoh, H. Tomita, H. Yashito, H. Miura, C. Kodama, T. Seiki, A. T. Noda, Y. Yamada, D. Goto, M. Sawada, T. Miyoshi, Y. Niwa, M. Hara, T. Ohno, S. Iga, T. Arakawa, T. Inoue, and H. Kubokawa. The Non-hydrostatic Icosahedral Atmospheric Model: Description and development. Prog. Earth Planet. Sci., 1(1):18, 2014.
[22]
T. Seiki and T. Nakajima. Aerosol effects of the condensation process on a convective cloud simulation. J. Atmos. Sci., 71(2):833--853, 2014.
[23]
T. Shimokawabe, T. Aoki, J. Ishida, K. Kawano, and C. Muroi. 145 TFlops performance on 3990 GPUs of TSUBAME 2.0 supercomputer for an operational weather prediction. Procedia Comput. Sci., 4:1535--1544, 2011.
[24]
T. Shimokawabe, T. Aoki, and N. Onodera. Performance optimization and evaluation of a global climate application using a 440m horizontal mesh on the K computer. In SC14: The International Conference for High Performance Computing, Networking, Storage and Analysis, pages 251--261. IEEE, November 2014.
[25]
M. Terai, H. Yashiro, K. Sakamoto, S. Iga, and H. Tomita. High-productivity framework on GPU-rich supercomputers for operational weather prediction code ASUCA. In SC14: The International Conference for High Performance Computing, Networking, Storage and Analysis, November 2014.
[26]
K. Terasaki, M. Sawada, and T. Miyoshi. Local ensemble transform Kalman filter experiments with the Nonhydrostatic Icosahedral Atmospheric Model NICAM. SOLA, 11:23--26, 2015.
[27]
H. Tomita. New microphysical schemes with five and six categories by diagnostic generation of cloud ice. J. Meteorol. Soc. Japan, 86A:121--142, 2008.
[28]
H. Tomita, K. Goto, and M. Satoh. A new approach to atmospheric general circulation model: Global cloud resolving model NICAM and its computational performance. SIAM J. Sci. Comput., 30(6):2755--2776, 2008.
[29]
H. Tomita, H. Miura, S. Iga, T. Nasuno, and M. Satoh. A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32(8):L08805, 2005.
[30]
H. Tomita and M. Satoh. A new dynamical framework of nonhydrostatic global model using the icosahedral grid. Fluid Dyn. Res., 34(6):357--400, 2004.
[31]
H. Tomita, M. Satoh, and K. Goto. An optimization of the icosahedral grid modified by spring dynamics. J. Comput. Phys., 183(1):307--331, 2002.
[32]
H. Tomita, M. Tsugawa, M. Satoh, and K. Goto. Shallow water model on a modified icosahedral geodesic grid by using spring dynamics. J. Comput. Phys., 174(2):579--613, 2001.
[33]
H. Yashiro, K. Terasaki, T. Miyoshi, and H. Tomita. Performance evaluation of throughput-aware framework for ensemble data assimilation: The case of NICAM-LETKF. Geosci. Model Dev. Discuss., submitted.

Cited By

View all
  • (2024)Research on GRAPES Semi-Implicit Semi-Lagrangian Computation Optimization Based on CPU+GPU Heterogeneity2024 6th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT)10.1109/ECNCT63103.2024.10704385(411-417)Online publication date: 19-Jul-2024
  • (2023)Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warmingProgress in Earth and Planetary Science10.1186/s40645-023-00583-x10:1Online publication date: 18-Aug-2023
  • (2022)PerFlowProceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming10.1145/3503221.3508405(177-191)Online publication date: 2-Apr-2022
  • Show More Cited By
  1. Performance Analysis and Optimization of Nonhydrostatic ICosahedral Atmospheric Model (NICAM) on the K Computer and TSUBAME2.5

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      PASC '16: Proceedings of the Platform for Advanced Scientific Computing Conference
      June 2016
      141 pages
      ISBN:9781450341264
      DOI:10.1145/2929908
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      In-Cooperation

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 08 June 2016

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Climate
      2. Extreme-Scale Computing
      3. GCM
      4. K Computer
      5. Memory-Bound
      6. OpenACC
      7. TSUBAME2.5
      8. Weather

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      PASC '16

      Acceptance Rates

      PASC '16 Paper Acceptance Rate 12 of 44 submissions, 27%;
      Overall Acceptance Rate 109 of 221 submissions, 49%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)61
      • Downloads (Last 6 weeks)13
      Reflects downloads up to 01 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Research on GRAPES Semi-Implicit Semi-Lagrangian Computation Optimization Based on CPU+GPU Heterogeneity2024 6th International Conference on Electronics and Communication, Network and Computer Technology (ECNCT)10.1109/ECNCT63103.2024.10704385(411-417)Online publication date: 19-Jul-2024
      • (2023)Recent global nonhydrostatic modeling approach without using a cumulus parameterization to understand the mechanisms underlying cloud changes due to global warmingProgress in Earth and Planetary Science10.1186/s40645-023-00583-x10:1Online publication date: 18-Aug-2023
      • (2022)PerFlowProceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming10.1145/3503221.3508405(177-191)Online publication date: 2-Apr-2022
      • (2021)The Nonhydrostatic ICosahedral Atmospheric Model for CMIP6 HighResMIP simulations (NICAM16-S): experimental design, model description, and impacts of model updatesGeoscientific Model Development10.5194/gmd-14-795-202114:2(795-820)Online publication date: 4-Feb-2021
      • (2021)Climate-model-informed deep learning of global soil moisture distributionGeoscientific Model Development10.5194/gmd-14-4429-202114:7(4429-4441)Online publication date: 19-Jul-2021
      • (2021)The GPU version of LASG/IAP Climate System Ocean Model version 3 (LICOM3) under the heterogeneous-compute interface for portability (HIP) framework and its large-scale applicationGeoscientific Model Development10.5194/gmd-14-2781-202114:5(2781-2799)Online publication date: 18-May-2021
      • (2020)A performance-portable nonhydrostatic atmospheric dycore for the energy exascale earth system model running at cloud-resolving resolutionsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3433701.3433823(1-14)Online publication date: 9-Nov-2020
      • (2020)A 1024-member ensemble data assimilation with 3.5-km mesh global weather simulationsProceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis10.5555/3433701.3433703(1-10)Online publication date: 9-Nov-2020
      • (2020)A Performance-Portable Nonhydrostatic Atmospheric Dycore for the Energy Exascale Earth System Model Running at Cloud-Resolving Resolutions.SC20: International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC41405.2020.00096(1-14)Online publication date: Nov-2020
      • (2020)A 1024-Member Ensemble Data Assimilation with 3.5-Km Mesh Global Weather SimulationsSC20: International Conference for High Performance Computing, Networking, Storage and Analysis10.1109/SC41405.2020.00005(1-10)Online publication date: Nov-2020
      • Show More Cited By

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media