Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2933575.2933595acmconferencesArticle/Chapter ViewAbstractPublication PageslicsConference Proceedingsconference-collections
research-article

Upper Bounds on the Quantifier Depth for Graph Differentiation in First Order Logic

Published: 05 July 2016 Publication History

Abstract

We show that on graphs with n vertices the 2-dimensional Weisfeiler-Leman algorithm requires at most O(n2 / log(n)) iterations to reach stabilization. This in particular shows that the previously best, trivial upper bound of O(n2) is asymptotically not tight. In the logic setting this translates to the statement that if two graphs of size n can be distinguished by a formula in first order logic with counting with 3 variables (i.e., in C3) then they can also be distinguished by a C3-formula that has quantifier depth at most O(n2 / log(n)).
To prove the result we define a game between two players that enables us to decouple the causal dependencies between the processes happening simultaneously over several iterations of the algorithm. This allows us to treat large color classes and small color classes separately. As part of our proof we show that for graphs with bounded color class size, the number of iterations until stabilization is at most linear in the number of vertices. This also yields a corresponding statement in first order logic with counting.
Similar results can be obtained for the respective logic without counting quantifiers, i.e., for the logic L3.

References

[1]
L. Babai. Handbook of Combinatorics (vol. 2), chapter Automorphism groups, isomorphism, reconstruction, pages 1447--1540. MIT Press, Cambridge, MA, USA, 1995. ISBN 0-262-07171-1.
[2]
L. Babai. Graph isomorphism in quasipolynomial time. CoRR, abs/1512.03547, 2015. URL http://arxiv.org/abs/1512.03547.
[3]
L. Babai, P. Erdős, and S. M. Selkow. Random graph isomorphism. SIAM Journal on Computing, 9(3):628--635, 1980. URL http://dx.doi.org/10.1137/0209047.
[4]
C. Berkholz and J. Nordström. Near-optimal lower bounds on quantifier depth and Weisfeiler-Leman refinement steps. In 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, New York City, USA, July 5-8, 2016. IEEE, 2016. to appear.
[5]
C. Berkholz, P. S. Bonsma, and M. Grohe. Tight lower and upper bounds for the complexity of canonical colour refinement. In H. L. Bodlaender and G. F. Italiano, editors, Algorithms - ESA 2013 - 21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings, volume 8125 of Lecture Notes in Computer Science, pages 145--156. Springer, 2013. URL http://dx.doi.org/10.1007/978-3-642-40450-4_13.
[6]
M. Bläser. Fast matrix multiplication. Theory of Computing, Graduate Surveys, 5:1--60, 2013. URL http://dx.doi.org/10.4086/toc.gs.2013.005.
[7]
J.-Y. Cai, M. Fürer, and N. Immerman. An optimal lower bound on the number of variables for graph identification. Combinatorica, 12(4):389--410, 1992.
[8]
P. J. Cameron. Coherent configurations, association schemes and permutation groups. In Groups, combinatorics & geometry (Durham, 2001), pages 55--71. World Sci. Publ., River Edge, NJ, 2003. URL http://dx.doi.org/10.1142/9789812564481_0004.
[9]
A. Cardon and M. Crochemore. Partitioning a graph in O(|A| log2 |V|). Theor. Comput. Sci., 19:85--98, 1982. 90016-0. URL http://dx.doi.org/10.1016/0304-3975(82)90016-0.
[10]
P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure in symmetry detection for CNF. In S. Malik, L. Fix, and A. B. Kahng, editors, Proceedings of the 41th Design Automation Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004, pages 530--534. ACM, 2004. URL http://doi.acm.org/10.1145/996566.996712.
[11]
M. Fürer. Weisfeiler-Lehman refinement requires at least a linear number of iterations. In F. Orejas, P. G. Spirakis, and J. van Leeuwen, editors, Automata, Languages and Programming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12, 2001, Proceedings, volume 2076 of Lecture Notes in Computer Science, pages 322--333. Springer, 2001. URL http://dx.doi.org/10.1007/3-540-48224-5_27.
[12]
M. Grohe. Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM, 59(5):27, 2012. 2371662. URL http://doi.acm.org/10.1145/2371656.2371662.
[13]
M. Grohe and O. Verbitsky. Testing graph isomorphism in parallel by playing a game. In M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, Automata, Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part I, volume 4051 of Lecture Notes in Computer Science, pages 3--14. Springer, 2006. URL http://dx.doi.org/10.1007/11786986_2.
[14]
M. Grohe, K. Kersting, M. Mladenov, and E. Selman. Dimension reduction via colour refinement. In A. S. Schulz and D. Wagner, editors, Algorithms - ESA 2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume 8737 of Lecture Notes in Computer Science, pages 505--516. Springer, 2014. URL http://dx.doi.org/10.1007/978-3-662-44777-2_42.
[15]
N. Immerman and E. Lander. Describing graphs: A first-order approach to graph canonization. In A. Selman, editor, Complexity Theory Retrospective, pages 59--81. Springer New York, 1990. ISBN 978-1-4612-8793-3. URL http://dx.doi.org/10.1007/978-1-4612-4478-3_5.
[16]
T. A. Junttila and P. Kaski. Engineering an efficient canonical labeling tool for large and sparse graphs. In Proceedings of the Nine Workshop on Algorithm Engineering and Experiments, ALENEX 2007, New Orleans, Louisiana, USA, January 6, 2007. SIAM, 2007. URL http://dx.doi.org/10.1137/1.9781611972870.13.
[17]
S. Kiefer, P. Schweitzer, and E. Selman. Graphs identified by logics with counting. In G. F. Italiano, G. Pighizzini, and D. Sannella, editors, Mathematical Foundations of Computer Science 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, volume 9234 of Lecture Notes in Computer Science, pages 319--330. Springer, 2015. URL http://dx.doi.org/10.1007/978-3-662-48057-1_25.
[18]
J. Köbler and O. Verbitsky. From invariants to canonization in parallel. In E. A. Hirsch, A. A. Razborov, A. L. Semenov, and A. Slissenko, editors, Computer Science - Theory and Applications, Third International Computer Science Symposium in Russia, CSR 2008, Moscow, Russia, June 7-12, 2008, Proceedings, volume 5010 of Lecture Notes in Computer Science, pages 216--227. Springer, 2008. URL http://dx.doi.org/10.1007/978-3-540-79709-8_23.
[19]
A. Krebs and O. Verbitsky. Universal covers, color refinement, and two-variable counting logic: Lower bounds for the depth. In 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 689--700. IEEE, 2015. URL http://dx.doi.org/10.1109/LICS.2015.69.
[20]
L. Kucera. Canonical labeling of regular graphs in linear average time. In 28th Annual Symposium on Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pages 271--279. IEEE Computer Society, 1987. URL http://dx.doi.org/10.1109/SFCS.1987.11.
[21]
W. Li, H. Saidi, H. Sanchez, M. Schäf, and P. Schweitzer. Detecting similar programs via the Weisfeiler-Leman graph kernel. In 15th International Conference on Software Reuse, ICSR 2016, Limassol, Cyprus, June 5-7, 2016. Proceedings, 2016. to appear.
[22]
B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symb. Comput., 60:94--112, 2014. URL http://dx.doi.org/10.1016/j.jsc.2013.09.003.
[23]
M. Otto. Bounded variable logics and counting -- A study in finite models, volume 9. Springer-Verlag, 1997. IX+183 pages.
[24]
O. Pikhurko and O. Verbitsky. Logical complexity of graphs: a survey. In Model theoretic methods in finite combinatorics, volume 558 of Contemp. Math., pages 129--179. Amer. Math. Soc., Providence, RI, 2011. URL http://dx.doi.org/10.1090/conm/558/11050.
[25]
N. Shervashidze, P. Schweitzer, E. J. van Leeuwen, K. Mehlhorn, and K. M. Borgwardt. Weisfeiler-Lehman graph kernels. Journal of Machine Learning Research, 12:2539--2561, 2011. URL http://dl.acm.org/citation.cfm?id=2078187.

Cited By

View all
  • (2023)Fine-grained expressivity of graph neural networksProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668144(46658-46700)Online publication date: 10-Dec-2023
  • (2023)Near-optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement StepsJournal of the ACM10.1145/319525770:5(1-32)Online publication date: 11-Oct-2023
  • (2023)The Iteration Number of the Weisfeiler-Leman Algorithm2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS56636.2023.10175741(1-13)Online publication date: 26-Jun-2023
  • Show More Cited By
  1. Upper Bounds on the Quantifier Depth for Graph Differentiation in First Order Logic

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    LICS '16: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
    July 2016
    901 pages
    ISBN:9781450343916
    DOI:10.1145/2933575
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 05 July 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Weisfeiler-Leman
    2. counting quantifiers
    3. first order logic
    4. quantifier depth

    Qualifiers

    • Research-article
    • Research
    • Refereed limited

    Funding Sources

    Conference

    LICS '16
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 215 of 622 submissions, 35%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)4
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Fine-grained expressivity of graph neural networksProceedings of the 37th International Conference on Neural Information Processing Systems10.5555/3666122.3668144(46658-46700)Online publication date: 10-Dec-2023
    • (2023)Near-optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement StepsJournal of the ACM10.1145/319525770:5(1-32)Online publication date: 11-Oct-2023
    • (2023)The Iteration Number of the Weisfeiler-Leman Algorithm2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS56636.2023.10175741(1-13)Online publication date: 26-Jun-2023
    • (2023)Compressing CFI Graphs and Lower Bounds for the Weisfeiler-Leman Refinements2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00052(798-809)Online publication date: 6-Nov-2023
    • (2020)Weisfeiler and leman go sparseProceedings of the 34th International Conference on Neural Information Processing Systems10.5555/3495724.3497555(21824-21840)Online publication date: 6-Dec-2020
    • (2020)The Weisfeiler-Leman algorithmACM SIGLOG News10.1145/3436980.34369827:3(5-27)Online publication date: 16-Nov-2020
    • (2019)The Weisfeiler--Leman Dimension of Planar Graphs Is at Most 3Journal of the ACM10.1145/333300366:6(1-31)Online publication date: 27-Nov-2019
    • (2019)Walk refinement, walk logic, and the iteration number of the Weisfeiler-Leman algorithm2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS.2019.8785694(1-13)Online publication date: Jun-2019
    • (2017)The weisfeiler-leman dimension of planar graphs is at most 3Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science10.5555/3329995.3330042(1-12)Online publication date: 20-Jun-2017
    • (2017)The Weisfeiler-Leman dimension of planar graphs is at most 32017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS.2017.8005107(1-12)Online publication date: Jun-2017
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media