Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
column

Multi-Objective Parametric Query Optimization

Published: 02 June 2016 Publication History

Abstract

We propose a generalization of the classical database query optimization problem: multi-objective parametric query optimization (MPQ). MPQ compares alternative processing plans according to multiple execution cost metrics. It also models missing pieces of information on which plan costs depend upon as parameters. Both features are crucial to model query processing on modern data processing platforms. MPQ generalizes previously proposed query optimization variants such as multi-objective query optimization, parametric query optimization, and traditional query optimization. We show however that the MPQ problem has different properties than prior variants and solving it requires novel methods. We present an algorithm that solves the MPQ problem and finds for a given query the set of all relevant query plans. This set contains all plans that realize optimal execution cost tradeoffs for any combination of parameter values. Our algorithm is based on dynamic programming and recursively constructs relevant query plans by combining relevant plans for query parts. We assume that all plan execution cost functions are piecewise-linear in the parameters. We use linear programming to compare alternative plans and to identify plans that are not relevant. We present a complexity analysis of our algorithm and experimentally evaluate its performance.

References

[1]
S. Agarwal, A. Iyer, and A. Panda. Blink and it's done: interactive queries on very large data. In VLDB, volume 5, pages 1902--1905, 2012.
[2]
A. Bemporad, K. Fukuda, and F. Torrisi. Convexity recognition of the union of polyhedra. Computational Geometry, 18(3):141--154, 2001.
[3]
P. Bizarro, N. Bruno, and D. DeWitt. Progressive parametric query optimization. KDE, 21(4):582--594, 2009.
[4]
P. Darera and J. Haritsa. On the production of anorexic plan diagrams. PVLDB, 2007.
[5]
A. Dey, S. Bhaumik, and J. Haritsa. Efficiently approximating query optimizer plan diagrams. In VLDB, pages 1325--1336, 2008.
[6]
S. Ganguly. Design and analysis of parametric query optimization algorithms. In VLDB, pages 228--238, 1998.
[7]
S. Ganguly, W. Hasan, and R. Krishnamurthy. Query optimization for parallel execution. In SIGMOD, pages 9--18, 1992.
[8]
A. Hulgeri and S. Sudarshan. Parametric query optimization for linear and piecewise linear cost functions. In VLDB, pages 167--178, 2002.
[9]
A. Hulgeri and S. Sudarshan. AniPQO: almost non-intrusive parametric query optimization for nonlinear cost functions. In PVLDB, pages 766--777, 2003.
[10]
Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric Query Optimization. VLDBJ, 6(2):132--151, may 1997.
[11]
C. Papadimitriou and M. Yannakakis. Multiobjective query optimization. In PODS, pages 52--59, 2001.
[12]
H. Park and J. Widom. Query optimization over crowdsourced data. VLDB, pages 781--792, 2013.
[13]
N. Reddy and J. Haritsa. Analyzing plan diagrams of database query optimizers. VLDB, pages 1228--1239, 2005.
[14]
P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. Access path selection in a relational database management system. In SIGMOD, pages 23--34, 1979.
[15]
M. Steinbrunn, G. Moerkotte, and A. Kemper. Heuristic and randomized optimization for the join ordering problem. VLDBJ, 6(3):191--208, aug 1997.
[16]
I. Trummer and C. Koch. Approximation schemes for many-objective query optimization. In SIGMOD, pages 1299--1310, 2014.
[17]
I. Trummer and C. Koch. An incremental anytime algorithm for multi-objective query optimization. In SIGMOD, pages 1941--1953, 2015.
[18]
Z. Xu, Y. C. Tu, and X. Wang. PET: Reducing Database Energy Cost via Query Optimization. VLDB, 5(12):1954--1957, 2012.

Cited By

View all
  • (2023)Demonstration of SPARQL: An Interfacing Language for Supporting Graph Machine Learning for RDF GraphsProceedings of the VLDB Endowment10.14778/3611540.361159916:12(3974-3977)Online publication date: 1-Aug-2023
  • (2023)Multiple Query Optimization Using a Gate-Based Quantum ComputerIEEE Access10.1109/ACCESS.2023.332425311(114031-114043)Online publication date: 2023
  • (2023)Optimizing ML Inference Queries Under ConstraintsWeb Engineering10.1007/978-3-031-34444-2_4(51-66)Online publication date: 6-Jun-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM SIGMOD Record
ACM SIGMOD Record  Volume 45, Issue 1
March 2016
73 pages
ISSN:0163-5808
DOI:10.1145/2949741
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 02 June 2016
Published in SIGMOD Volume 45, Issue 1

Check for updates

Qualifiers

  • Column

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)2
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Demonstration of SPARQL: An Interfacing Language for Supporting Graph Machine Learning for RDF GraphsProceedings of the VLDB Endowment10.14778/3611540.361159916:12(3974-3977)Online publication date: 1-Aug-2023
  • (2023)Multiple Query Optimization Using a Gate-Based Quantum ComputerIEEE Access10.1109/ACCESS.2023.332425311(114031-114043)Online publication date: 2023
  • (2023)Optimizing ML Inference Queries Under ConstraintsWeb Engineering10.1007/978-3-031-34444-2_4(51-66)Online publication date: 6-Jun-2023
  • (2020)Recommending Deployment Strategies for Collaborative TasksProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3389719(3-17)Online publication date: 11-Jun-2020
  • (2019)Multi-objective performance optimization of ORC cycle based on improved ant colony algorithmOpen Physics10.1515/phys-2019-000617:1(48-59)Online publication date: 28-Mar-2019
  • (2018)Join query optimization techniques for complex event processing applicationsProceedings of the VLDB Endowment10.14778/3236187.323618911:11(1332-1345)Online publication date: 1-Jul-2018
  • (2017)User Query Optimisation: A Creative Computing ApproachSoftware Engineering and Methodology for Emerging Domains10.1007/978-981-10-3482-4_5(68-78)Online publication date: 17-Jan-2017

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media