Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/2973750.2973775acmotherconferencesArticle/Chapter ViewAbstractPublication PagesmobicomConference Proceedingsconference-collections
research-article

DopEnc: acoustic-based encounter profiling using smartphones

Published: 03 October 2016 Publication History
  • Get Citation Alerts
  • Abstract

    This paper presents DopEnc, an acoustic-based encounter profiling system on smartphones. DopEnc can automatically identify the persons that users interact with in the context of encountering. DopEnc performs encounter profiling in two major steps: (1) Doppler profiling to detect that two persons approach and stop in front of each other via an effective trajectory, and (2) voice profiling to confirm that they are thereafter engaged in an interactive conversation. DopEnc is further extended to support parallel acoustic exploration of many users by incorporating a unique multiple access scheme within the limited inaudible acoustic frequency band. All implementation of DopEnc is based on commodity sensors like speakers, microphones and accelerometers integrated on commercial-off-the-shelf smartphones. We evaluate DopEnc with detailed experiments and a real use-case study of 11 participants. Overall DopEnc achieves an accuracy of 6.9% false positive and 9.7% false negative in real usage.

    References

    [1]
    LifeLog. Available at Google Play, visited Jun. 2016.
    [2]
    Keep. Available at Google Play, visited Jun. 2016.
    [3]
    Y. Kim, S. Lee, I. Hwang, H. Ro, Y. Lee, M. Moon, and J. Song. High5: Promoting interpersonal hand-to-hand touch for vibrant workplace with electrodermal sensor watches. In ACM UbiComp, 2014.
    [4]
    R. Sen, Y. Lee, K. Jayarajah, A. Misra, and R. K. Balan. Grumon: Fast and accurate group monitoring for heterogeneous urban spaces. In ACM SenSys, 2014.
    [5]
    C. Gomez, J. Oller, and J. Paradells. Overview and evaluation of bluetooth low energy: An emerging low-power wireless technology. Sensors, 12(9):11734--11753, 2012.
    [6]
    J. Niu, W. Song, C. Liu, L. Shu, and C. Chen. Necas: Near field communication system for smartphone based on visible light. In IEEE WCNC, 2014.
    [7]
    D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. Speaker verification using adapted gaussian mixture models. Digital Signal Processing, 10(1-3):19--41, 2000.
    [8]
    F. Bimbot, J. F. Bonastre, C. Frdouille, G. Gravier, I. M. Chagnolleau, S. Meignier, T. Merlin, J. O. Garcia, D. P. Delacretaz, and D. A. Reynolds. A tutorial on text-independent speaker verification. EURASIP Journal on Applied Signal Processing, 2004(1):430--451, 2004.
    [9]
    J. Rosen and L. Q. Gothard. Encyclopedia of Physical Science. Facts on File, 2009.
    [10]
    Z. Sun, A. Purohit, R. Bose, and P. Zhang. Spartacus: Spatially-aware interaction for mobile devices through energy-efficient audio sensing. In ACM MobiSys, 2013.
    [11]
    Tektronix. Understanding fft overlap processing fundamentals. Technical report, Tetronix Inc., 2011.
    [12]
    A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee: Zero-effort crowdsourcing for indoor localization. In ACM MobiCom, 2012.
    [13]
    J. Wang, D. Vasisht, and D. Katabi. Rf-idraw: Virtual touch screen in the air using rf signals. In ACM SIGCOMM, 2014.
    [14]
    R. W. Bohannon. Comfortable and maximum walking speed of adults aged 20-79 years: Reference values and determinants. Age and Ageing, 26(1):15--19, 1997.
    [15]
    D. C. Brogan and N. L. Johnson. Realistic human walking paths. In CASA, 2003.
    [16]
    N. Roy, H. Wang, and R. R. Choudhury. I am a smartphone and I can tell my user's walking direction. In ACM MobiSys, 2014.
    [17]
    M. Yang, H. Zheng, H. Wang, S. McClean, and N. Harris. Assessing the utility of smart mobile phones in gait pattern analysis. Health Technol., 2(1):81--88, 2012.
    [18]
    C. Peng, G. Shen, and Y. Zhang. Beepbeep: A high accuracy acoustic ranging system using cots mobile devices. In ACM SenSys, 2007.
    [19]
    M. Youssef, A. youssef, C. Rieger, U. Shankar, and A. Agrawala. Pinpoint: An asynchronous time-based location determination system. In ACM MobiSys, 2006.
    [20]
    B. Kusy, V. Protopopescu, and M. Parang. Radio interferometric tracking of mobile wireless nodes. In ACM MobiSys, 2007.
    [21]
    M. Maroti, P. Volgyesi, S. Dora, B. Kusy, A. Nadas, A. Ledeczi, G. Balogh, and K. Molnar. Radio interferometric geolocation. In ACM SenSys, 2005.
    [22]
    E. T. Hall. The Hidden Dimension. Anchor, 1990.
    [23]
    H. Lu, A. B. Brush, B. Priyantha, A. K. Karlson, and J. Liu. Speakersense: Energy efficient unobstrusive speaker identification on mobile phones. In Pervasive, 2011.
    [24]
    Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju, C. Yoo, M. Moon, U. Lee, and J. Song. Sociophone: Everyday face-to-face interaction monitoring platform using multi-phone sensor fusion. In ACM MobiSys, 2013.
    [25]
    C. Luo and M. C. Chan. Socialweaver: Collaborative inference of human conversation networks using smartphones. In ACM SenSys, 2013.
    [26]
    G. Chakraborty, K. Naik, D. Chakraborty, N. Shiratori, and D. Wei. Analysis of the bluetooth device discovery protocol. Wireless Networks, 16(2):421--436, 2010.
    [27]
    D. Camps-mur, A. Garcia-saavedra, and P. Serrano. Device-to-device communications with wi-fi direct: Overview and experimentation. IEEE Wireless Communications, 20(13):96--104, 2013.
    [28]
    Y.-C. Tung and K. G. Shin. Echotag: Accurate infrastructure-free indoor location tagging with smartphones. In ACM MobiCom, 2015.
    [29]
    R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram. Effects of obesity and sex on the energetic cost and preferred speed of walking. Journal of Applied Physiology, 100(2):390--398, 2005.
    [30]
    L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders. Fundamentals of Acoustics. Wiley, 1999.
    [31]
    Moonsoon Solutions Inc., http://www.msoon.com/, visited Mar. 2015.
    [32]
    J. Xiong, K. Sundaresan, and K. Jamieson. Tonetrack: Leveraging frequency-agile radios for time-based indoor wireless localization. In ACM MobiCom, 2015.
    [33]
    S. Jain, C. Borgiattino, Y. Ren, M. Gruteser, Y. Chen, and C.-F. Chiasserini. Lookup: Enabling pedestrian safety services via shoe sensing. In ACM MobiSys, 2015.
    [34]
    R. Nandakumar, S. Gollakota, and N. Watson. Contactless sleep apnea detection on smartphones. In ACM MobiSys, 2015.
    [35]
    C. Karatas and M. Gruteser. Printing multi-key touch interfaces. In ACM UbiComp, 2015.
    [36]
    Y. Shu, K. G. Shin, T. He, and J. Chen. Last-mile navigation using smartphones. In ACM MobiCom, 2015.
    [37]
    S. Shi, L. Chen, W. Hu, and M. Gruteser. Reading between lines: High-rate, non-intrusive visual codes within regular videos via implicitcode. In ACM UbiComp, 2015.
    [38]
    L. Sun, S. Sen, D. Koutsonikolas, and K.-H. Kim. Widraw: Enabling hands-free drawing in the air on commodity wifi devices. In ACM MobiCom, 2015.
    [39]
    S. Kumar, S. Gil, D. Katabi, and D. Rus. Accurate indoor localization with zero start-up cost. In ACM MobiCom, 2014.
    [40]
    H.-Y. Lee, H.-M. Lin, Y.-L. Wei, H. l Wu, H.-M. Tsai, and K. C.-J. Lin. Rollinglight: Enabling line-of-sight light-to-camera communications. In ACM MobiSys, 2015.
    [41]
    B. Hand, F. Qian, and M.-R. Ra. Human assisted positioning using textual signs. In ACM HotMobile, 2015.
    [42]
    K. Ali, A. X. Liu, W. Wang, and M. Shahzad. Keystroke recognition using wifi signals. In ACM MobiCom, 2015.
    [43]
    T. Wei and X. Zhang. mtrack: High-precision passive tracking using millimeter wave radios. In ACM MobiCom, 2015.
    [44]
    T. Li, C. An, Z. Tian, A. T. Campbell, and X. Zhou. Human sensing using visible light communication. In ACM MobiCom, 2015.
    [45]
    M. T. I. Aumi, S. Gupta, M. Goel, E. Larson, and S. Patel. Doplink: Using the doppler effect for multi-device interaction. In ACM UbiComp, 2013.
    [46]
    S. Gupta, D. Morris, S. N. Patel, and D. Tan. Soundwave: Using the doppler effect to sense gestures. In ACM CHI, 2012.
    [47]
    S. Yun, Y.-C. Chen, and L. Qiu. Turning a mobile device into a mouse in the air. In ACM MobiSys, 2015.
    [48]
    W. Huang, Y. Xiong, X.-Y. Li, H. Lin, X. Mao, P. Yang, and Y. Liu. Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones. In IEEE INFOCOM, 2014.
    [49]
    L. Zhang, X.-Y. Li, W. Huang, K. Liu, S. Zong, X. Jian, P. Feng, T. Jung, and Y. Liu. It starts with igraze: Visual attention driven networking with smart glasses. In ACM MobiCom, 2014.
    [50]
    G. E. Santagati and T. Melodia. U-wear: Software-defined ultrasonic networking for wearable devices. In ACM MobiSys, 2015.
    [51]
    R. Nandakumar, K. K. Chintalapudi, V. N. Padmanabhan, and R. Venkatesan. Dhwani: Secure peer-to-peer acoustic nfc. In ACM SIGCOMM, 2013.

    Cited By

    View all
    • (2024)FusionTrack: Towards Accurate Device-free Acoustic Motion Tracking with Signal FusionACM Transactions on Sensor Networks10.1145/365466620:3(1-30)Online publication date: 30-Mar-2024
    • (2024)Face Recognition In Harsh Conditions: An Acoustic Based ApproachProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661855(1-14)Online publication date: 3-Jun-2024
    • (2023)Automated Face-To-Face Conversation Detection on a Commodity Smartwatch with Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108827:3(1-29)Online publication date: 27-Sep-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    MobiCom '16: Proceedings of the 22nd Annual International Conference on Mobile Computing and Networking
    October 2016
    532 pages
    ISBN:9781450342261
    DOI:10.1145/2973750
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 03 October 2016

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. acoustic signals
    2. doppler effect
    3. encounter profiling
    4. multiple access
    5. voice profiling

    Qualifiers

    • Research-article

    Conference

    MobiCom'16

    Acceptance Rates

    MobiCom '16 Paper Acceptance Rate 31 of 226 submissions, 14%;
    Overall Acceptance Rate 440 of 2,972 submissions, 15%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)36
    • Downloads (Last 6 weeks)2
    Reflects downloads up to 10 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)FusionTrack: Towards Accurate Device-free Acoustic Motion Tracking with Signal FusionACM Transactions on Sensor Networks10.1145/365466620:3(1-30)Online publication date: 30-Mar-2024
    • (2024)Face Recognition In Harsh Conditions: An Acoustic Based ApproachProceedings of the 22nd Annual International Conference on Mobile Systems, Applications and Services10.1145/3643832.3661855(1-14)Online publication date: 3-Jun-2024
    • (2023)Automated Face-To-Face Conversation Detection on a Commodity Smartwatch with Acoustic SensingProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36108827:3(1-29)Online publication date: 27-Sep-2023
    • (2023)HearFireProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/35695006:4(1-25)Online publication date: 11-Jan-2023
    • (2023)SCALAR: Self-Calibrated Acoustic Ranging for Distributed Mobile DevicesIEEE Transactions on Mobile Computing10.1109/TMC.2023.3241304(1-15)Online publication date: 2023
    • (2023)PD-FMCW: Push the Limit of Device-Free Acoustic Sensing Using Phase Difference in FMCWIEEE Transactions on Mobile Computing10.1109/TMC.2022.316263122:8(4865-4880)Online publication date: 1-Aug-2023
    • (2023) HearFit + : Personalized Fitness Monitoring via Audio Signals on Smart Speakers IEEE Transactions on Mobile Computing10.1109/TMC.2021.312568422:5(2756-2770)Online publication date: 1-May-2023
    • (2023)WiDE: WiFi Distance Based Group Profiling Via Machine LearningIEEE Transactions on Mobile Computing10.1109/TMC.2021.307384822:1(607-620)Online publication date: 1-Jan-2023
    • (2023)Joint Estimation of the Distance and Relative Velocity of Obstacles via Smartphone Active Sound Sensing for Pedestrian Safety2023 IEEE International Conference on Pervasive Computing and Communications (PerCom)10.1109/PERCOM56429.2023.10099353(32-42)Online publication date: 13-Mar-2023
    • (2023)WakeUp: Fine-Grained Fatigue Detection Based on Multi-Information Fusion on Smart SpeakersIEEE INFOCOM 2023 - IEEE Conference on Computer Communications10.1109/INFOCOM53939.2023.10229021(1-10)Online publication date: 17-May-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    ePub

    View this article in ePub.

    ePub

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media