Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/301250.301376acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
Article
Free access

Finding similar regions in many strings

Published: 01 May 1999 Publication History
First page of PDF

References

[1]
V. Barns, E. Lawlcr and P. Pevzner, Approximation algorithms for multiple sequence alignment, Proc. 8th Ann. Combinatorial Pattern Matching Conf. (CPM'9~I), pp. 43.53~ 1994.
[2]
A. Ben-Dot, G. Lancta, J. Perone, and R. Ravl, Banishlng bias from consensus sequences, Proc. 8th Ann. Combinatorial Pattern Matching Conf. (CPM'97), pp.247-261,1997
[3]
Berman, D. Gumucio, R. Hardison~ W. Miller, and N. $tojanovic, A linear-time algorithm for the l-mismatch problem, WADS'97, 1997.
[4]
Q. Chan, G. Hertz, G. Stormo, Matrix search 1.0: a computer program that scans DNA sequences for transcriptional elements using a database of weight matrices, CABIOS 11995) 563-566.
[5]
J. Dopazo, A. Rodriguez, J. C. Sfiiz, and F. Sobrino, Design of primers for PCR amplification of highly variable ~enomes, CABIOS, 9(1993), 123-125.
[6]
Y. M. Fraenkel, Y Mandel, D. Friedberg and H. Margalit, Identification of common motifs in unaligned DNA sequences: applicat:ion to Escherichia coli Lrp regulon, GABIOS, (1995) 379-387.
[7]
M. Frances, A. Litman, On covering problems of codes, Theor. Comput. Syst. 30(1997) 113-119.
[8]
M. Garey and D. Johnson, Computers and Intractability, a guild to the theory of NP-completeness, Freeman, 1979.
[9]
L. GOsieniec, J. Jansson, and A. Lingas, Efficient approximation algorithms for the Hamming center problem, to appear in SODA '99.
[10]
D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds, Bull. Math. Biol., vol. 30, pp. 141-154, 1993.
[11]
D. Gusfield, Algorithms on Strings, Trees, and Sequences, Cambridge Univ. Press, 1997.
[12]
G. Hertz and O. $tormo, Identification of consensus pal;terns in unaligned DNA and protein sequences: a large-deviation statistical basis for penalizing gaps. In: Proc. $rd Int'l Conf. Bioinforraatics and Genome Rasaarch (Lira and Cantor, eds.) World Scientific, 1995, pp. 201-216.
[13]
W. t~oeffding, Probability inequalities for sums of bound random variables. J. Amar. Statist. Assoc.,
[14]
R. Karp, Reducibility among combinatorial problems, in R.E. Miller and J.W. Thatcher (eds), Complexity of Computer Computations, Plenum Press, pp. 85-103. ~972.
[15]
Y. V. Kondrakhin, A.E. Kel, N.A. Kolchanov, A.G. Romashchenko, and L. Milanesi, Eutmryotic promoter recognition by binding sites for transcription factors, CABIOS, pp. 477-488, 1995.
[16]
C. Lawrence and A. Reilly, An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned blopolymer sequences, Proteins 7(1990) 41-51.
[17]
K. Lucas, M. Busch, S. MSssinger and J.A. Thompson, An improved microcomputer program for fmding gene- or gene family-specific oligonucleotides suib able as primers for polymerase chain reactions or as probes, CABIOS, 7(1991), 525-529.
[18]
K. Lanctot, M. Li, B. Ms, $. Wang, and L. Zhang, Distinguishing string selection problems, to appear in SODA '99.
[19]
M. Li, P. Vi~/myi, An Introduction to Kolmogoro~ Complexity and Its Applications, Springer, 1993.
[20]
R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge Univ. Press~ 1995.
[21]
P. Pevzner, Multiple alignment, communication cost, and graph matching, SIAM J. Applied Math., ~2(1~92), 1~~~-t779.
[22]
D. S. Prestridge, SIGNAL SCAN 4.0: additional databases and sequence formal:s, (TABIOS (1996) 157-160.
[23]
V. Proutski and E. C. Holme, Primer Master: a new program for the design and analysis of PCR primers, CA BIOS, 12(1996), 253-255
[24]
M.A. Roytberg, A search ~or common patterns in many sequences, CABIOS (1992) 57-64.
[25]
G. Stormo, Consensus patterns in DNA, in R.F. DooIittle (ed.), Molecular evolution: computer analysis of protein and nucleic acid sequences, Methods in IEnzyrnology, 183, pp. 211-221, 1990.
[26]
G. S~ormo and G.W. Har~zell III, Identifying proteinbinding sites from unaligned DNA fragments. Proc. Natl. Acad. $ci. USA, 88(1991)., 5699-5703.
[27]
F. Wolfertstetter, K. Frech, G. Herrmann and T. Wemer, CABIOS (1996) 71-80.

Cited By

View all
  • (2024)TFscope: systematic analysis of the sequence features involved in the binding preferences of transcription factorsGenome Biology10.1186/s13059-024-03321-825:1Online publication date: 10-Jul-2024
  • (2023)A survey on algorithms to characterize transcription factor binding sitesBriefings in Bioinformatics10.1093/bib/bbad156Online publication date: 25-Apr-2023
  • (2022)Expectation Maximization based algorithm applied to DNA sequence motif finder2022 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC55065.2022.9870303(1-8)Online publication date: 18-Jul-2022
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
STOC '99: Proceedings of the thirty-first annual ACM symposium on Theory of Computing
May 1999
790 pages
ISBN:1581130678
DOI:10.1145/301250
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 May 1999

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Conference

STOC99
Sponsor:
STOC99: ACM Symposium on Theory of Computing
May 1 - 4, 1999
Georgia, Atlanta, USA

Acceptance Rates

Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)71
  • Downloads (Last 6 weeks)8
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)TFscope: systematic analysis of the sequence features involved in the binding preferences of transcription factorsGenome Biology10.1186/s13059-024-03321-825:1Online publication date: 10-Jul-2024
  • (2023)A survey on algorithms to characterize transcription factor binding sitesBriefings in Bioinformatics10.1093/bib/bbad156Online publication date: 25-Apr-2023
  • (2022)Expectation Maximization based algorithm applied to DNA sequence motif finder2022 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC55065.2022.9870303(1-8)Online publication date: 18-Jul-2022
  • (2022)A Heuristic Solution to the Closest String Problem Using Wave Function Collapse TechniquesIEEE Access10.1109/ACCESS.2022.321800310(115869-115883)Online publication date: 2022
  • (2022)Towards a Better Understanding of Heuristic Approaches Applied to the Biological Motif DiscoveryIntelligent Systems10.1007/978-3-031-21686-2_13(180-194)Online publication date: 19-Nov-2022
  • (2021)Fast and exact quantification of motif occurrences in biological sequencesBMC Bioinformatics10.1186/s12859-021-04355-622:1Online publication date: 18-Sep-2021
  • (2019)Chapman-Kolmogorov Relation Based Median String Algorithm for DNA Consensus Classification2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)10.1109/ICASERT.2019.8934582(1-6)Online publication date: May-2019
  • (2018)Sequence motif finder using memetic algorithmBMC Bioinformatics10.1186/s12859-017-2005-119:1Online publication date: 3-Jan-2018
  • (2018)Selected String ProblemsHandbook of Heuristics10.1007/978-3-319-07124-4_58(1221-1240)Online publication date: 14-Aug-2018
  • (2017)Selected String ProblemsHandbook of Heuristics10.1007/978-3-319-07153-4_58-1(1-20)Online publication date: 22-Feb-2017
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media