Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3018661.3022755acmconferencesArticle/Chapter ViewAbstractPublication PageswsdmConference Proceedingsconference-collections
tutorial

Neural Text Embeddings for Information Retrieval

Published: 02 February 2017 Publication History
  • Get Citation Alerts
  • Abstract

    In the last few years, neural representation learning approaches have achieved very good performance on many natural language processing tasks, such as language modelling and machine translation. This suggests that neural models will also achieve good performance on information retrieval (IR) tasks, such as relevance ranking, addressing the query-document vocabulary mismatch problem by using a semantic rather than lexical matching. Although initial iterations of neural models do not outperform traditional lexical-matching baselines, the level of interest and effort in this area is increasing, potentially leading to a breakthrough. The popularity of the recent SIGIR 2016 workshop on Neural Information Retrieval provides evidence to the growing interest in neural models for IR. While recent tutorials have covered some aspects of deep learning for retrieval tasks, there is a significant scope for organizing a tutorial that focuses on the fundamentals of representation learning for text retrieval. The goal of this tutorial will be to introduce state-of-the-art neural embedding models and bridge the gap between these neural models with early representation learning approaches in IR (e.g., LSA). We will discuss some of the key challenges and insights in making these models work in practice, and demonstrate one of the toolsets available to researchers interested in this area.

    References

    [1]
    A. Atreya and C. Elkan. Latent semantic indexing (lsi) fails for trec collections. ACM SIGKDD Explorations Newsletter, 12 (2): 5--10, 2011.
    [2]
    D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. pharXiv preprint arXiv:1409.0473, 2014.
    [3]
    D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning research, 3: 993--1022, 2003.
    [4]
    N. Craswell, W. B. Croft, J. Guo, B. Mitra, and M. de Rijke. Report on the sigir 2016 workshop on neural information retrieval (neu-ir). 2016.
    [5]
    S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harshman. Indexing by latent semantic analysis. JASIS, 41 (6): 391--407, 1990.
    [6]
    F. Diaz, B. Mitra, and N. Craswell. Query expansion with locally-trained word embeddings. In Proc. ACL, 2016.
    [7]
    A. M. Elkahky, Y. Song, and X. He. A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proc. WWW, pages 278--288, 2015.
    [8]
    H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. Platt, et al. From captions to visual concepts and back. arXiv preprint arXiv:1411.4952, 2014.
    [9]
    D. Ganguly, D. Roy, M. Mitra, and G. J. Jones. Word embedding based generalized language model for information retrieval. In Proc. SIGIR, pages 795--798. ACM, 2015.
    [10]
    J. Gao, P. Pantel, M. Gamon, X. He, L. Deng, and Y. Shen. Modeling interestingness with deep neural networks. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, 2014.
    [11]
    M. Grbovic, N. Djuric, V. Radosavljevic, and N. Bhamidipati. Search retargeting using directed query embeddings. In Proc. WWW, pages 37--38. International World Wide Web Conferences Steering Committee, 2015.
    [12]
    P. Gupta, K. Bali, R. E. Banchs, M. Choudhury, and P. Rosso. Query expansion for mixed-script information retrieval. In Proc. SIGIR, pages 677--686. ACM, 2014.
    [13]
    X. He, R. Srivastava, J. Gao, and L. Deng. Joint learning of distributed representations for images and texts. arXiv preprint arXiv:1504.03083, 2015.
    [14]
    F. Hill, K. Cho, S. Jean, C. Devin, and Y. Bengio. Not all neural embeddings are born equal. arXiv preprint arXiv:1410.0718, 2014.
    [15]
    T. Hofmann. Probabilistic latent semantic indexing. In Proc. SIGIR, pages 50--57. ACM, 1999.
    [16]
    B. Hu, Z. Lu, H. Li, and Q. Chen. Convolutional neural network architectures for matching natural language sentences. In Proc. NIPS, pages 2042--2050, 2014.
    [17]
    P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck. Learning deep structured semantic models for web search using clickthrough data. In Proc. CIKM, pages 2333--2338. ACM, 2013.
    [18]
    R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu. Exploring the limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.
    [19]
    N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188, 2014.
    [20]
    T. Kenter and M. de Rijke. Short text similarity with word embeddings. In Proc. CIKM, volume 15, page 115.
    [21]
    Q. V. Le and T. Mikolov. Distributed representations of sentences and documents. arXiv preprint arXiv:1405.4053, 2014.
    [22]
    O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic regularities in sparse and explicit word representations. CoNLL-2014, page 171, 2014.
    [23]
    H. Li and Z. Lu. Deep learning for information retrieval.
    [24]
    T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
    [25]
    B. Mitra. Exploring session context using distributed representations of queries and reformulations. In Proc. SIGIR, pages 3--12. ACM, 2015.
    [26]
    B. Mitra and N. Craswell. Query auto-completion for rare prefixes. In Proc. CIKM. ACM, To appear, 2015.
    [27]
    B. Mitra, F. Diaz, and N. Craswell. Learning to match using local and distributed representations of text for web search. arXiv preprint arXiv:1610.08136, 2016.
    [28]
    Mitra, Nalisnick, Craswell, and Caruana]mitra2016desmB. Mitra, E. Nalisnick, N. Craswell, and R. Caruana. A dual embedding space model for document ranking. arXiv preprint arXiv:1602.01137, 2016.
    [29]
    E. Nalisnick, B. Mitra, N. Craswell, and R. Caruana. Improving document ranking with dual word embeddings. In Proc. WWW, 2016.
    [30]
    J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. Proc. EMNLP, 12: 1532--1543, 2014.
    [31]
    S. Robertson. Understanding inverse document frequency: on theoretical arguments for idf. Journal of documentation, 60 (5): 503--520, 2004.
    [32]
    D. Roy, D. Paul, M. Mitra, and U. Garain. Using word embeddings for automatic query expansion. arXiv preprint arXiv:1606.07608, 2016.
    [33]
    R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate Reasoning, 50 (7): 969--978, 2009.
    [34]
    G. Salton, A. Wong, and C.-S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18 (11): 613--620, 1975.
    [35]
    A. Severyn and A. Moschitti. Learning to rank short text pairs with convolutional deep neural networks. In Proc. SIGIR, pages 373--382. ACM, 2015.
    [36]
    Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. Learning semantic representations using convolutional neural networks for web search. In Proc. WWW, pages 373--374, 2014.
    [37]
    F. Sun, J. Guo, Y. Lan, J. Xu, and X. Cheng. Learning word representations by jointly modeling syntagmatic and paradigmatic relations. In Proc. ACL, 2015.
    [38]
    L. Vilnis and A. McCallum. Word representations via gaussian embedding. arXiv preprint arXiv:1412.6623, 2014.
    [39]
    I. Vulić and M.-F. Moens. Monolingual and cross-lingual information retrieval models based on (bilingual) word embeddings. In Proc. SIGIR, pages 363--372. ACM, 2015.
    [40]
    X. Yan, J. Guo, S. Liu, X. Cheng, and Y. Wang. Learning topics in short texts by non-negative matrix factorization on term correlation matrix. In Proceedings of the SIAM International Conference on Data Mining, 2013.
    [41]
    D. Yu, A. Eversole, M. Seltzer, K. Yao, Z. Huang, B. Guenter, O. Kuchaiev, Y. Zhang, F. Seide, H. Wang, et al. An introduction to computational networks and the computational network toolkit. Technical report, Tech. Rep. MSR, Microsoft Research, 2014, http://codebox/cntk, 2014.
    [42]
    G. Zheng and J. Callan. Learning to reweight terms with distributed representations. In Proc. SIGIR, pages 575--584. ACM, 2015.

    Cited By

    View all
    • (2024)SeNSe: embedding alignment via semantic anchors selectionInternational Journal of Data Science and Analytics10.1007/s41060-024-00522-zOnline publication date: 20-Mar-2024
    • (2024)Automatic Query Generation Based on Adaptive Naked Mole-Rate AlgorithmMultimedia Tools and Applications10.1007/s11042-024-19492-2Online publication date: 27-Jun-2024
    • (2024)TWOLAR: A TWO-Step LLM-Augmented Distillation Method for Passage RerankingAdvances in Information Retrieval10.1007/978-3-031-56027-9_29(470-485)Online publication date: 20-Mar-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    WSDM '17: Proceedings of the Tenth ACM International Conference on Web Search and Data Mining
    February 2017
    868 pages
    ISBN:9781450346757
    DOI:10.1145/3018661
    Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author.

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 February 2017

    Check for updates

    Author Tags

    1. information retrieval
    2. neural networks
    3. representation learning

    Qualifiers

    • Tutorial

    Conference

    WSDM 2017

    Acceptance Rates

    WSDM '17 Paper Acceptance Rate 80 of 505 submissions, 16%;
    Overall Acceptance Rate 498 of 2,863 submissions, 17%

    Upcoming Conference

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)64
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 28 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)SeNSe: embedding alignment via semantic anchors selectionInternational Journal of Data Science and Analytics10.1007/s41060-024-00522-zOnline publication date: 20-Mar-2024
    • (2024)Automatic Query Generation Based on Adaptive Naked Mole-Rate AlgorithmMultimedia Tools and Applications10.1007/s11042-024-19492-2Online publication date: 27-Jun-2024
    • (2024)TWOLAR: A TWO-Step LLM-Augmented Distillation Method for Passage RerankingAdvances in Information Retrieval10.1007/978-3-031-56027-9_29(470-485)Online publication date: 20-Mar-2024
    • (2024)An Overview on Large Language ModelsGenerative AI for Effective Software Development10.1007/978-3-031-55642-5_1(3-21)Online publication date: 1-Jun-2024
    • (2023)Machine Learning-Enhanced Text Mining as a Support Tool for Research on Climate Change5G, Artificial Intelligence, and Next Generation Internet of Things10.4018/978-1-6684-8634-4.ch004(86-122)Online publication date: 30-Jun-2023
    • (2023)First steps towards improving official statistics data accessibility in Mexico: Query expansion with neural networks and ad-hoc space vectorsStatistical Journal of the IAOS10.3233/SJI-23001439:3(745-754)Online publication date: 12-Sep-2023
    • (2023)Cross-language information retrieval for poetry form of literature-based on machine transliteration using CNNJournal of Intelligent & Fuzzy Systems10.3233/JIFS-22359145:2(3025-3037)Online publication date: 1-Aug-2023
    • (2023)Dense Text Retrieval based on Pretrained Language Models: A SurveyACM Transactions on Information Systems10.1145/3637870Online publication date: 18-Dec-2023
    • (2023)Multi-Modal Graph-Based Recommendation System: Integrating Heterogeneous Modalities for Enhanced Predictions2023 International Conference on Electrical, Computer and Energy Technologies (ICECET)10.1109/ICECET58911.2023.10389370(1-9)Online publication date: 16-Nov-2023
    • (2023)Generative AI in Education2023 IEEE 15th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM)10.1109/HNICEM60674.2023.10589199(1-6)Online publication date: 19-Nov-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media