Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3041021.3051101acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
tutorial

Computational Models for Social Network Analysis: A Brief Survey

Published: 03 April 2017 Publication History

Abstract

With the exponential growth of online social network services such as Facebook and Twitter, social networks and social medias become more and more important, directly influencing politics, economics, and our daily life. Mining big social networks aims to collect and analyze web-scale social data to reveal patterns of individual and group behaviors. It is an inherently interdisciplinary academic field which emerged from sociology, psychology, statistics, and graph theory. In this article, I briefly survey recent progress on social network mining with an emphasis on understanding the interactions among users in the large dynamic social networks. I will start with some basic knowledge for social network analysis, including methodologies and tools for macro-level, meso-level and microlevel social network analysis. Then I will give an overall roadmap of social network mining. After that, I will describe methodologies for modeling user behavior including state-of-the-art methods for learning user profiles, and introduce recent progress on modeling dynamics of user behaviors using deep learning. Then I will present models and algorithms for quantitative analysis on social interac- tions including homophily and social influence.Finally, I will introduce network structure model including social group formation, and network topology generation. We will introduce recent developed network embedding algorithms for modeling social networks with the embedding techniques. Finally, I will use several concrete examples from Alibaba, the largest online shopping website in the world, and WeChat, the largest social messaging service in China, to explain how online social networks influence our offline world.

References

[1]
A. Anagnostopoulos, R. Kumar, and M. Mahdian. Influence and correlation in social networks. In KDD'08, pages 7--15, 2008.
[2]
L. Backstrom, R. Kumar, C. Marlow, J. Novak, and A. Tomkins. Preferential behavior in online groups. In WSDM'08, pages 117--128, 2008.
[3]
L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. In WSDM'11, pages 635--644, 2011.
[4]
E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social influence in social advertising: evidence from field experiments. In EC'12, pages 146--161, 2012.
[5]
A.-L. Barabási and R. Albert. Emergence of scaling in random networks. Science, 286(5439):509--512, 1999.
[6]
V. Belak, S. Lam, and C. Hayes. Cross-community influence in discussion fora. In ICWSM'12, pages 34--41, 2012.
[7]
R. M. Bond, C. J. Fariss, J. J. Jones, A. D. I. Kramer, C. Marlow, J. E. Settle, and J. H. Fowler. A 61-million-person experiment in social influence and political mobilization. Nature, 489:295--298, 2012.
[8]
R. S. Burt. Structural Holes: The Social Structure of Competition. Harvard University Press, 1992.
[9]
M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules for information extraction. In Proceedings of Association for the Advancement of Artificial Intelligence (AAAI'99), pages 328--334, 1999.
[10]
W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-scale social networks. In KDD'10, pages 1029--1038, 2010.
[11]
W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD'09, pages 199--207, 2009.
[12]
D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. Feedback effects between similarity and social influence in online communities. In KDD'08, pages 160--168, 2008.
[13]
J. A. Davis and S. Leinhardt. The structure of positive interpersonal relations in small groups. In J. Berger, editor, Sociological Theories in Progress, volume 2, pages 218--251. Houghton Mifflin, 1972.
[14]
C. P. Diehl, G. Namata, and L. Getoor. Relationship identification for social network discovery. In AAAI, pages 546--552, 2007.
[15]
P. S. Dodds, R. Muhamad, and D. J. Watts. An experimental study of search in global social networks. science, 301(5634):827--829, 2003.
[16]
P. Domingos and M. Richardson. Mining the network value of customers. In KDD'01, pages 57--66, 2001.
[17]
Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification of dense communities in the web. In WWW'2007, pages 461--470, 2007.
[18]
R. I. Dunbar. Neocortex size as a constraint on group size in primates. Journal of human evolution, 22(6):469--493, 1992.
[19]
N. Eagle, A. S. Pentland, and D. Lazer. Inferring social network structure using mobile phone data. PNAS, 106(36), 2009.
[20]
D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.
[21]
P. Erdos and A. Renyi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci, 5:17--61, 1960.
[22]
M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relationships of the internet topology. In SIGCOMM'99, pages 251--262, 1999.
[23]
G. Fischer. User modeling in human-computer interaction. User modeling and user-adapted interaction, 11(1--2):65--86, 2001.
[24]
J. H. Fowler and N. A. Christakis. Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study. In British Medical Journal, 2008.
[25]
L. Getoor and B. Taskar. Introduction to statistical relational learning. The MIT Press, 2007.
[26]
J. Giles et al. Making the links. Nature, 488(7412):448--450, 2012.
[27]
M. Girvan and M. E. Newman. Community structure in social and biological networks. PNAS, 99(12):7821--7826, 2002.
[28]
A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in social networks. In WSDM'10, pages 241--250, 2010.
[29]
M. Granovetter. The strength of weak ties. American Journal of Sociology, 78(6):1360--1380, 1973.
[30]
D. Gruhl, R. Guha, D. Liben-Nowell, and A. Tomkins. Information diffusion through blogspace. In WWW'04, pages 491--501, 2004.
[31]
R. Guha, R. Kumar, P. Raghavan, and A. Tomkins. Propagation of trust and distrust. In WWW'04, pages 403--412, 2004.
[32]
J. Hopcroft, T. Lou, and J. Tang. Who will follow you back? reciprocal relationship prediction. In CIKM'11, pages 1137--1146, 2011.
[33]
E. Katz. The two-step flow of communication: an up-to-date report of an hypothesis. In Enis and Cox(eds.), Marketing Classics, pages 175--193, 1973.
[34]
E. Katz and P. F. Lazarsfeld. Personal Influence. The Free Press, New York, USA, 1955.
[35]
H. C. Kelman. Compliance, identification, and internalization: Three processes of attitude change. Journal of Conflict Resolution, 2(1):51--60, 1958.
[36]
D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In KDD'03, pages 137--146, 2003.
[37]
D. Krackhardt. The Strength of Strong ties: the importance of philos in networks and organization in Book of Nitin Nohria and Robert G. Eccles (Ed.), Networks and Organizations. Cambridge, Harvard Business School Press, Hershey, USA, 1992.
[38]
P. F. Lazarsfeld, B. Berelson, and H. Gaudet. The people's choice: How the voter makes up his mind in a presidential campaign. Columbia University Press, New York, USA, 1944.
[39]
P. F. Lazarsfeld and R. K. Merton. Friendship as a social process: A substantive and methodological analysis. M. Berger, T. Abel, and C. H. Page, editors, Freedom and control in modern society, New York: Van Nostrand, pages 8--66, 1954.
[40]
D. Lazer, A. S. Pentland, L. Adamic, S. Aral, A. L. Barabasi, D. Brewer, N. Christakis, N. Contractor, J. Fowler, M. Gutmann, et al. Life in the network: the coming age of computational social science. Science, 323(5915):721, 2009.
[41]
J. Leskovec, D. Huttenlocher, and J. Kleinberg. Predicting positive and negative links in online social networks. In WWW'10, pages 641--650, 2010.
[42]
J. Leskovec, D. Huttenlocher, and J. Kleinberg. Signed networks in social media. In CHI'10, pages 1361--1370, 2010.
[43]
J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In KDD'07, pages 420--429, 2007.
[44]
D. Liben-Nowell and J. M. Kleinberg. The link-prediction problem for social networks. JASIST, 58(7):1019--1031, 2007.
[45]
L. Liu, J. Tang, J. Han, and S. Yang. Learning influence from heterogeneous social networks. Data Mining and Knowledge Discovery, 25(3):511--544, 2012.
[46]
T. Lou and J. Tang. Mining structural hole spanners through information diffusion in social networks. In WWW'13, pages 837--848, 2013.
[47]
T. Lou, J. Tang, J. Hopcroft, Z. Fang, and X. Ding. Learning to predict reciprocity and triadic closure in social networks. TKDD, 2013, (accepted).
[48]
M. McPherson, L. Smith-Lovin, and J. Cook. Birds of a feather: Homophily in social networks. Annual review of sociology, pages 415--444, 2001.
[49]
A. K. Menon and C. Elkan. A log-linear model with latent features for dyadic prediction. In ICDM, pages 364--373, 2010.
[50]
S. Milgram. The small world problem. Psychology Today, 2:60--67, 1967.
[51]
S. A. Myers, C. Zhu, and J. Leskovec. Information diffusion and external influence in networks. In KDD'12, pages 33--41, 2012.
[52]
M. E. J. Newman. Clustering and preferential attachment in growing networks. Phys. Rev. E, 64(2):025102, 2001.
[53]
M. E. J. Newman. Fast algorithm for detecting community structure in networks. Phys. Rev. E, 69(066133), 2004.
[54]
L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford University, 1999.
[55]
A. Popescul and L. H. Ungar. Statistical relational learning for link prediction. In IJCAI03 Workshop on Learning Statistical Models from Relational Data, volume 149, page 172, 2003.
[56]
M. Richardson and P. Domingos. Mining knowledge-sharing sites for viral marketing. In KDD'02, pages 61--70, 2002.
[57]
K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion probabilities for independent cascade model. In KES '08, pages 67--75, 2008.
[58]
P. Sarkar and A. W. Moore. Dynamic social network analysis using latent space models. SIGKDD Explor. Newsl., 7(2):31--40, 2005.
[59]
J. Scripps, P.-N. Tan, and A.-H. Esfahanian. Measuring the effects of preprocessing decisions and network forces in dynamic network analysis. In KDD'2009, pages 747--756, 2009.
[60]
X. Shi, J. Zhu, R. Cai, and L. Zhang. User grouping behavior in online forums. In KDD'09, pages 777--786, 2009.
[61]
X. Shuai, Y. Ding, J. Busemeyer, S. Chen, Y. Sun, and J. Tang. Modeling indirect influence on twitter. IJSWIS, 8(4):20--36, 2012.
[62]
G. Simmel. Sociological Theory. 7th ed. New York: McGraw-Hill, 2008.
[63]
P. Singla and M. Richardson. Yes, there is a correlation: - from social networks to personal behavior on the web. In WWW'08, pages 655--664, 2008.
[64]
C. Tan, L. Lee, J. Tang, L. Jiang, M. Zhou, and P. Li. User-level sentiment analysis incorporating social networks. In KDD'11, pages 1397--1405, 2011.
[65]
C. Tan, J. Tang, J. Sun, Q. Lin, and F. Wang. Social action tracking via noise tolerant time-varying factor graphs. In KDD'10, pages 1049--1058, 2010.
[66]
J. Tang, T. Lou, and J. Kleinberg. Inferring social ties across heterogeneous networks. In WSDM'12, pages 743--752, 2012.
[67]
J. Tang, J. Sun, C. Wang, and Z. Yang. Social influence analysis in large-scale networks. In KDD'09, pages 807--816, 2009.
[68]
J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer: Extraction and mining of academic social networks. In KDD'08, pages 990--998, 2008.
[69]
L. Tang and H. Liu. Relational learning via latent social dimensions. In KDD'09, pages 817--826, 2009.
[70]
B. Taskar, M. F. Wong, P. Abbeel, and D. Koller. Link prediction in relational data. In NIPS, 2003.
[71]
C. Wang, J. Han, Y. Jia, J. Tang, D. Zhang, Y. Yu, and J. Guo. Mining advisor-advisee relationships from research publication networks. In KDD'10, pages 203--212, 2010.
[72]
D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, pages 440--442, Jun 1998.
[73]
Y. Yang, J. Tang, C. W.-k. Leung, Y. Sun, Q. Chen, J. Li, and Q. Yang. Rain: Social role-aware information diffusion. In AAAI'15, 2015.
[74]
J. Zhang, B. Liu, J. Tang, T. Chen, and J. Li. Social influence locality for modeling retweeting behaviors. In IJCAI'13, pages 2761--2767, 2013.

Cited By

View all
  • (2023)The Power of Weak Signals: A Twitter Analysis on Game of Thrones’ Final SeasonTransactions on Large-Scale Data- and Knowledge-Centered Systems LV10.1007/978-3-662-68100-8_2(25-63)Online publication date: 28-Sep-2023
  • (2022)Enhancing Marine Data Transmission with Socially Aware Resilient Vessel NetworksIEEE Wireless Communications10.1109/MWC.004.210061229:3(72-78)Online publication date: Jun-2022
  • (2021)Score Prediction Algorithm Combining Deep Learning and Matrix Factorization in Sensor Cloud SystemsIEEE Access10.1109/ACCESS.2020.30351629(47753-47766)Online publication date: 2021
  • Show More Cited By

Index Terms

  1. Computational Models for Social Network Analysis: A Brief Survey

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion
    April 2017
    1738 pages
    ISBN:9781450349147

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. big data
    2. social influence
    3. social networks
    4. user behavior

    Qualifiers

    • Tutorial

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Companion Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)27
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 05 Mar 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)The Power of Weak Signals: A Twitter Analysis on Game of Thrones’ Final SeasonTransactions on Large-Scale Data- and Knowledge-Centered Systems LV10.1007/978-3-662-68100-8_2(25-63)Online publication date: 28-Sep-2023
    • (2022)Enhancing Marine Data Transmission with Socially Aware Resilient Vessel NetworksIEEE Wireless Communications10.1109/MWC.004.210061229:3(72-78)Online publication date: Jun-2022
    • (2021)Score Prediction Algorithm Combining Deep Learning and Matrix Factorization in Sensor Cloud SystemsIEEE Access10.1109/ACCESS.2020.30351629(47753-47766)Online publication date: 2021
    • (2021) Smart opinion formation maximization to improve political education of undergraduates in Social Information‐Centric Networking Internet Technology Letters10.1002/itl2.2884:5Online publication date: 22-Mar-2021
    • (2020)Social-IFD: Personalized Influential Friends Discovery Based on Semantics in LBSNICC 2020 - 2020 IEEE International Conference on Communications (ICC)10.1109/ICC40277.2020.9148703(1-6)Online publication date: Jun-2020
    • (2019)Distributed Centrality Analysis of Social Network Data Using MapReduceAlgorithms10.3390/a1208016112:8(161)Online publication date: 9-Aug-2019
    • (2018)A Study of Measurement of Audience in Social NetworksProceedings of the Future Technologies Conference (FTC) 201810.1007/978-3-030-02686-8_28(359-368)Online publication date: 18-Oct-2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media