Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3041021.3054191acmotherconferencesArticle/Chapter ViewAbstractPublication PagesthewebconfConference Proceedingsconference-collections
research-article

Top-k Query Processing with Conditional Skips

Published: 03 April 2017 Publication History

Abstract

This work improves the efficiency of dynamic pruning algorithms by introducing a new posting iterator that can skip large parts of the matching documents during top-k query processing. Namely, the conditional-skip iterator jumps to a target document while skipping all matching documents preceding the target that cannot belong to the final result list. We experiment with two implementations of the new iterator, and show that integrating it into representative dynamic pruning algorithms such as MaxScore, WAND, and Block Max WAND (BMW), reduces the document scoring overhead, and eventually the query latency.

References

[1]
V. N. Anh and A. Moffat. Pruned query evaluation using pre-computed impacts. In Proceedings of SIGIR, pages 372--379. ACM, 2006.
[2]
A. Z. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. Efficient query evaluation using a two-level retrieval process. In Proceedings of CIKM, pages 426--434. ACM, 2003.
[3]
C. Buckley and A. F. Lewit. Optimization of inverted vector searches. In Proceedings of SIGIR, pages 97--110. ACM, 1985.
[4]
K. Chakrabarti, S. Chaudhuri, and V. Ganti. Interval-based pruning for top-k processing over compressed lists. In Proceedings of ICDE, pages 709--720, 2011.
[5]
J. S. Culpepper, M. Petri, and F. Scholer. Efficient in-memory top-k document retrieval. In Proceedings of SIGIR, pages 225--234. ACM, 2012.
[6]
C. M. Daoud, E. S. de Moura, A. Carvalho, A. S. da Silva, D. Fernandes, and C. Rossi. Fast top-k preserving query processing using two-tier indexes. Information Processing & Management, 2016.
[7]
C. Dimopoulos, S. Nepomnyachiy, and T. Suel. Optimizing top-k document retrieval strategies for block-max indexes. In Proceedings of WSDM, pages 113--122. ACM, 2013.
[8]
S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In Proceedings of SIGIR, pages 993--1002. ACM, 2011.
[9]
M. Fontoura, V. Josifovski, J. Liu, S. Venkatesan, X. Zhu, and J. Zien. Evaluation strategies for top-k queries over memory-resident inverted indexes. Proceedings of the VLDB Endowment, 4(12):1213--1224, 2011.
[10]
I. Guy. Searching by talking: Analysis of voice queries on mobile web search. In Proceedings of SIGIR, pages 35--44. ACM, 2016.
[11]
R. Konow and G. Navarro. Dual-sorted inverted lists in practice. In Proceedings of SPIRE, pages 295--306. Springer-Verlag, 2012.
[12]
R. Konow, G. Navarro, C. L. Clarke, and A. López-Ortíz. Faster and smaller inverted indices with treaps. In Proceedings of SIGIR, pages 193--202. ACM, 2013.
[13]
C. Macdonald, I. Ounis, and N. Tonellotto. Upper-bound approximations for dynamic pruning. ACM Trans. Inf. Syst., 29(4):17:1--17:28, Dec. 2011.
[14]
A. Moffat and J. Zobel. Self-indexing inverted files for fast text retrieval. ACM Trans. Inf. Syst., 14(4):349--379, Oct. 1996.
[15]
G. Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2--20, 2014.
[16]
G. Ottaviano and R. Venturini. Partitioned elias-fano indexes. In Proceedings of SIGIR, pages 273--282. ACM, 2014.
[17]
M. Persin. Document filtering for fast ranking. In Proceedings SIGIR, pages 339--348. ACM, 1994.
[18]
M. Persin, J. Zobel, and R. Sacks-Davis. Filtered document retrieval with frequency-sorted indexes. Journal of the American Society for Information Science, 47(10):749--764, 1996.
[19]
M. Petri, J. S. Culpepper, and A. Moffat. Exploring the magic of WAND. In Proceedings of ADCS, pages 58--65. ACM, 2013.
[20]
C. Rossi, E. S. de Moura, A. L. Carvalho, and A. S. da Silva. Fast document-at-a-time query processing using two-tier indexes. In Proceedings of SIGIR, pages 183--192. ACM, 2013.
[21]
R. Seidel and C. R. Aragon. Randomized search trees. Algorithmica, 16(4--5):464--497, 1996.
[22]
D. Shan, S. Ding, J. He, H. Yan, and X. Li. Optimized top-k processing with global page scores on block-max indexes. In Proceedings of WSDM, pages 423--432. ACM, 2012.
[23]
T. Strohman, H. Turtle, and W. B. Croft. Optimization strategies for complex queries. In Proceedings of SIGIR, pages 219--225. ACM, 2005.
[24]
J. Teevan, D. Ramage, and M. R. Morris.#twittersearch: A comparison of microblog search and web search. In Proceedings of WSDM, pages 35--44. ACM, 2011.
[25]
H. Turtle and J. Flood. Query evaluation: Strategies and optimizations. Inf. Process. Manage., 31(6):831--850, Nov. 1995.
[26]
L. Wang, J. Lin, and D. Metzler. A cascade ranking model for efficient ranked retrieval. In Proceedings of SIGIR, pages 105--114. ACM, 2011.
[27]
J. Zobel and A. Moffat. Inverted files for text search engines. ACM Comput. Surv., 38(2), July 2006.

Cited By

View all
  • (2023)Profiling and Visualizing Dynamic Pruning AlgorithmsProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591806(3125-3129)Online publication date: 19-Jul-2023
  • (2021)Window Navigation with Adaptive Probing for Executing BlockMax WANDProceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3404835.3463109(2323-2327)Online publication date: 11-Jul-2021
  • (2021)Optimizing Scoring and Sorting Operations for Faster WAND ProcessingAdvanced Data Mining and Applications10.1007/978-3-030-65390-3_38(499-514)Online publication date: 6-Jan-2021
  • Show More Cited By

Index Terms

  1. Top-k Query Processing with Conditional Skips

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    WWW '17 Companion: Proceedings of the 26th International Conference on World Wide Web Companion
    April 2017
    1738 pages
    ISBN:9781450349147

    Sponsors

    • IW3C2: International World Wide Web Conference Committee

    In-Cooperation

    Publisher

    International World Wide Web Conferences Steering Committee

    Republic and Canton of Geneva, Switzerland

    Publication History

    Published: 03 April 2017

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. conditional-skip iterator
    2. dynamic pruning
    3. top-k query processing

    Qualifiers

    • Research-article

    Conference

    WWW '17
    Sponsor:
    • IW3C2

    Acceptance Rates

    WWW '17 Companion Paper Acceptance Rate 164 of 966 submissions, 17%;
    Overall Acceptance Rate 1,899 of 8,196 submissions, 23%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)13
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 10 Feb 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)Profiling and Visualizing Dynamic Pruning AlgorithmsProceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3539618.3591806(3125-3129)Online publication date: 19-Jul-2023
    • (2021)Window Navigation with Adaptive Probing for Executing BlockMax WANDProceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3404835.3463109(2323-2327)Online publication date: 11-Jul-2021
    • (2021)Optimizing Scoring and Sorting Operations for Faster WAND ProcessingAdvanced Data Mining and Applications10.1007/978-3-030-65390-3_38(499-514)Online publication date: 6-Jan-2021
    • (2020)Finding the Best of Both WorldsProceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval10.1145/3397271.3401076(1031-1040)Online publication date: 25-Jul-2020
    • (2020)Scalable top-k retrieval with SpartaProceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming10.1145/3332466.3374522(62-73)Online publication date: 19-Feb-2020
    • (2018)Top-$k$ Subgraph Query Based on Frequent Structure in Large-Scale Dynamic GraphsIEEE Access10.1109/ACCESS.2018.28850386(78471-78482)Online publication date: 2018

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Figures

    Tables

    Media

    Share

    Share

    Share this Publication link

    Share on social media